简介第一颗人造地球卫星施普尼克1于1957年在椭圆形轨道上发射,围角度为215 km。在这些高度处,地球大气足够密集,可以使无塑形的卫星在几周内掉落。自第一次发射以来已经过去了几年,而太空推进的发展产生了卫星在太空中运行的方式发生重大变化。尽管如此,靠近地球的运营仍然是一个挑战。太空推进依赖于存储在板上的推进剂来产生推力,这将平台的寿命与存储的pellant量相关。降低手术高度意味着阻力的增加,并导致推进剂的增加。,但由于平台的大小和阻力受到质量质量的影响,因此对系统提出了严重的要求。空间任务需要找到使用现有资源的新有效方法。空气呼吸电动推进(ABEP)的概念依赖于航天器前面的入口来收集产生阻力的大气。使用电力,例如,从太阳阵列中收集,推进器然后将大气
摘要:人们对太空探索重新产生兴趣,这导致了有关先进太空推进系统(包括高效电力推进系统)的研究力度加大。尽管这些系统几十年前就已经在太空中进行了测试,目前正应用于各种太空平台和数千颗卫星,但它们在轨道和深空应用中的潜力尚未得到充分发挥。空间电力推进的一个特点是该技术中使用的物理过程种类繁多,这在许多其他类型的运输用推进系统(例如飞机或汽车使用的推进系统)中并不常见。各种物理过程和机制是不同电力推进技术的基础,应将它们结合起来,以推动未来空间电力推进系统科学技术的发展。这篇评论文章简要强调了空间电力推进的这一特点,并概述了这种多样性带来的一些挑战和机遇。
需要使用多种分析方法对单克隆抗体等生物制药进行严格表征。必须表征和良好控制各种材料特性,以确保保持临床相关特性和关键质量属性。需要彻底了解分析方法性能指标,特别是旨在解决测量差距的新兴方法,以确保方法适合其预期用途,以确保药物安全性、稳定性和功能活性。为此,已经使用 NISTmAb(一种具有生物制药代表性和公开可用的单克隆抗体测试材料)进行了一系列实验室间研究,以报告最先进的方法性能,协调最佳实践,并告知分析测量基础设施中的潜在差距。本文报告了这些实验室间研究的设计、结果和未来前景的摘要,这些研究侧重于生物制药开发过程中目前采用的一级结构、翻译后修饰和高阶结构测量。
核聚变长期以来一直被认为是一种理想的太空推进方法,因为它具有极高的燃料比能(比最好的化学燃料高 + 2 # 10 6)和排气速度(+ 4% 的光速,而最好的化学燃料为 + 4 公里/秒)。这种高性能将允许在参与研究人员的一生中快速完成行星际任务以及星际任务。1然而,聚变推进存在两个主要困难:点燃自持聚变链式反应的困难以及反应产生的大量电离辐射,这需要相当大的屏蔽质量来抵御这种辐射。1本摘要介绍了一种独特但众所周知的核物理技术“自旋极化”的能力,它可降低点火要求和航天器必须处理的电离辐射通量。
我们研究快速转发量子演化问题,即某些量子系统的动力学可以用演化时间次线性的门复杂度来模拟。我们提供了一个快速转发的定义,该定义考虑了量子计算模型、诱导演化的汉密尔顿量以及初始状态的属性。我们的定义考虑了一般情况的任何渐近复杂性改进,并用它来演示几个量子系统中的快速转发。特别是,我们表明,一些局部自旋系统(例如那些具有置换不变性的系统)的汉密尔顿量可以使用有效的量子电路转化为块对角形式,可以指数级快速转发。我们还表明,某些类的半正定局部自旋系统(也称为无挫折系统)可以多项式地快速转发,前提是初始状态由足够低能量的子空间支持。最后,我们表明,在一个量子门分别为特定费米子或玻色子算子的指数的模型中,所有二次费米子系统和数值守恒二次玻色子系统都可以指数级快速转发。我们的结果扩展了以前已知可以快速转发的物理汉密尔顿量类别,而不一定需要有效地对角化汉密尔顿量的方法。我们进一步建立了快速转发和精确能量测量之间的联系,这也解释了多项式改进。
Focus on the development of the LFR demonstrator (technical and economic viability) ALFRED Demonstrator, 125 MWe, connected to grid Evolution : • 2011, Romania expressed the interest to host ALFRED • 2013, FALCON international consortium set-up • 2014, nuclear platform Mioveni as reference site • 2018, RATEN ICN notified the regulatory body on the pre-licensing phase • 2020, starting the construction of相关许可和RDI基础架构
推力 = 通过风扇管道的空气质量流速 (V jb – V a ) + 通过核心发动机的空气质量流速 (V je – V a )
推力 = 通过风扇管道的空气质量流速 (V jb – V a ) + 通过核心发动机的空气质量流速 (V je – V a )
需要在硼中子捕获(BNCT)中的治疗计划与其他放射性疗法和专用方法不同。患者内部的核相互作用必须对剂量计算进行建模。由于缺乏更精确的数据,患者组织是根据通常从ICRU报告中获取的平均元素组成来定义的[1,2]。10 B的浓度相对于基于已公布数据的血液硼浓度估计。通常只能精确地定义血液的浓度。In BNCT treatment planning, four dose components are calculated: 1) high-LET boron dose due to the alpha particle and 7 Li nucleus released in 10 B( n , ) capture reaction at thermal neutron energies, 2) intermediate-LET thermal neutron dose primarily due to the protons (E=0.54 MeV) released in nitrogen neutron capture reaction 14 N( n , p ) 14 C in tissue, 3)中间 - 让快速中子剂量主要是由于1 h(n,n')1 h反应中释放的后方质子和4)在氢中子中子捕获反应中从组织中1 h(n,)2 h(n,= 2.2 meV)中的低LET光子剂量在组织中,通常在中子束中存在低γ污染物。到目前为止,只有蒙特卡洛方法已成功地用作剂量计算工具。通常使用Funlence-to-Kerma转换因子来定义剂量(kerma近似)。另一种选择是计算每个中子和光子相互作用或分别通过每个二次粒子沉积的能量。BNCT不存在龙门群体系统。现有的BNCT中子源具有固定的光束,这意味着必须将患者旋转到最佳治疗方向。旨在定义与光子放射疗法临床效果相对应的单位的患者剂量,每个剂量成分乘以相对生物学有效性(RBE)因子(传统方法)或生物剂量功能,例如光子等效剂量剂量模型[3,4]或微氨基化剂量学模型[5]。治疗计划图像应在计划方向上最佳拍摄。在本文中,审查了当前用于满足BNCT剂量计算和治疗计划独特需求的方法。