当今使用的公钥加密方案依赖于某些数学问题的难解性,而这些问题已知可以通过大规模量子计算机有效解决。为了满足长期安全需求,NIST 于 2016 年启动了一个项目,旨在标准化后量子密码 (PQC) 原语,这些原语依赖于未知的量子计算机目标问题,例如格问题。然而,从传统密码分析的角度来看是安全的算法可能会受到旁道攻击。因此,NIST 重点评估候选算法对旁道攻击的抵抗力。本论文重点研究了两个 NIST PQC 候选方案 Saber 和 CRYSTALS-Kyber 密钥封装机制 (KEM) 对旁道攻击的敏感性。我们提供了九篇论文,其中八篇重点介绍 Saber 和 CRYSTALS-Kyber 的旁道分析,一篇演示了对 STM32 MCU 中集成的硬件随机数生成器 (RNG) 的被动旁道攻击。在前三篇论文中,我们演示了对 Saber 和 CRYSTALS-Kyber 的高阶掩码软件实现的攻击。主要贡献之一是单步深度学习消息恢复方法,该方法能够直接从掩码实现中恢复秘密,而无需明确提取随机掩码。另一个主要贡献是一种称为递归学习的新神经网络训练方法,该方法可以训练神经网络,该神经网络能够以高于 99% 的概率从高阶掩码实现中恢复消息位。在接下来的两篇论文中,我们表明,即使受一阶掩码和改组保护的 Saber 和 CRYSTALS-Kyber 软件实现也可能受到攻击。我们提出了两种消息恢复方法:基于 Hamming 权重和基于 Fisher-Yates (FY) 索引。这两种方法都可以成功恢复密钥,但后者使用的痕迹要少得多。此外,我们扩展了基于 ECC 的密钥
摘要 - 本文提出了一种掩盖优化方法,用于使用图像介入来提高对象去除的质量。在许多现实情况下,许多介绍方法都经过一组随机掩码的训练,但在许多现实的情况下,indpainting的目标可能是一个对象,例如一个人。训练和推理图像中掩模之间的域间隙增加了介入任务的难度。在我们的方法中,通过训练通过分割提取的对象掩码训练介入网络来解决此域间隙,并且在推理步骤中也使用了此类对象掩码。此外,为了优化对象蒙版的介入,分割网络已连接到indpainting网络,并端到端训练以提高镶嵌性能。通过我们的面具扩展损失实现大型面具和小型面具之间的权衡,这种端到端训练的效果进一步增强了。实验结果证明了我们方法使用图像介入的方法去除对象的有效性。索引术语 - 图像inpainting,对象分割,对象删除
摘要。最近的方法表明,诸如剪辑之类的大规模视觉模型可以改善语义分割性能。这些方法通常是针对像素级视觉语言对准的,但通常依赖于剪辑中的低分辨率图像特征,从而导致沿边界的类歧义。此外,剪辑文本嵌入中的全局场景代表与本地和详细的像素级特征直接相关,从而使有意义的对齐变得更加困难。为了解决这些局限性,我们介绍了MTA-CLIP,这是一个采用面具级别视觉语言对准的新型框架。具体来说,我们首先提出了掩码文本解码器,该解码器使用夹夹语言模型使用丰富的文本数据来增强掩码代表。接下来,它使用掩码到文本对比度学习将蒙版表示与文本嵌入一致。此外,我们介绍了蒙版 - 文本提示学习,利用多个上下文特定的提示文本嵌入来捕获跨口罩的各种班级表示。总体而言,MTA-CLIP可以实现最先进的工作,在标准基准数据集,ADE20K和CityScapes上平均超过2.8%和1.3%。
摘要。在本文中,我们介绍了Indmask,这是一个框架,用于解释Black-Box时间序列模型的决策。存在大量用于提供机器学习模型解释的方法时,时间序列数据需要其他考虑。一个人需要考虑解释中的时间方面,并处理大量输入功能。最近的工作提出了通过在In-In-In-Time序列上产生面具来解释时间序列预测的。掩码中的每个条目对应于每个时间步骤的每个功能的重要性得分。但是,这些方法仅生成实例解释,这意味着需要对每个输入进行分别计算掩码,从而使它们不适合归纳设置,在这种情况下,需要为众多输入生成解释,并且实例解释的生成非常严重。此外,这些方法主要是在简单的复发性神经网络上评估的,通常仅适用于特定的下游任务。我们提出的框架IndMask通过利用掩码生成的参数化模型来解决这些问题。我们还超越了经常性的神经网络,并将indmask部署到变压器体系结构上,从而真正地阐明了其模型 - 不合Snostic的性质。通过对现实世界数据集和时间序列分类和预测任务的实验进一步证明了indmask的有效性。它也是有效的,并且可以与任何时间序列模型一起部署。
图1 F -MS框架的概述。a)f -ms的概念。对于给定的k -mer,使用删除函数f评估相应的掩码位λ(s,m,q)。b)低级操作。a f→f'重铸件在函数f下在函数f'下的另一个掩码下更改掩码,同时保留表示的k -mer集。Concat合并两个超弦和口罩。这两个操作都可以在原始F -MS或其相关索引上进行概念上执行。c)设置操作。操作OP由一系列contecat和Recast应用于输入F -MS,具有特定于操作的输入和输出功能(请参见Tab。1)。重铸件可以通过使用相同的目标函数压实来代替其数据结构的F -MS运行。
摘要。这项研究深入研究了用于用于胸部CT扫描的潜在扩散模型的合成肺结节的表征。我们的实验涉及通过二进制掩码进行定位和各种结节属性引导扩散过程。特别是,掩码指示结节在边界框的形状中的近似位置,而其他标量属性则在嵌入向量中编码。扩散模型在2D中运行,在推理过程中产生单个合成CT切片。该体系结构包括一个VQ-VAE编码器,以在图像和潜在空间之间进行转换,以及负责DeNoising过程的U-NET。我们的主要目标是评估合成图像的质量,这是条件属性的函数。我们讨论可能的偏见以及模型是否充分定位并表征合成结节。我们对拟议方法的能力和局限性的发现可能是涉及有限数据集的下游任务,因为医学成像通常是这种情况。
基于学习的方法的发展极大地提高了从电子显微镜 (EM) 图像中检测突触的能力。然而,为每个数据集训练一个模型非常耗时,而且需要大量的注释。此外,由于数据分布的变化,很难将学习到的模型应用于来自不同大脑区域的数据。在本文中,我们提出了 AdaSyn,这是一个基于分割的两阶段框架,用于具有弱点注释的域自适应突触检测。在第一阶段,我们利用基于分割的管道获得突触实例掩码来解决检测问题。在第二阶段,我们通过重新生成方形掩码来获得高质量的伪标签,从而提高模型在目标数据上的泛化能力。得益于我们的高精度检测结果,我们引入了距离最近原则来匹配成对的前突触和后突触。在 ISBI 2023 的 WASPSYN 挑战赛中,我们的方法排名第一。
本文引入了一种安全增强的混合图像加密方法,该方法采用了带环形涡旋相掩码(TVPMS)和QR分解,并带有Gyrator Transform。使用的TVPM是通过将径向希尔伯特变换(RHT)和环形区板(TZP)相结合而产生的错综复杂的相掩码。QR分解是一种数学操作,用于矩阵分解,可作为常规相截断的傅立叶变换(PTFT)方法的替代。加密系统表现出不对称性,鉴于加密和解密过程与依赖不同的安全密钥集不同。在解码系统中使用加密过程中产生的密钥来检索输入图像。系统性能通过评估均方误差,峰值信噪比,钥匙灵敏度,作物效应,相关系数,3-D网格,直方图和噪声攻击来测试。©Anita出版物。保留所有权利。
段的成功在很大程度上归因于一个带注释的数据集,该数据集的数据集超过10亿个掩码,该数据集比现有的数据集大400倍。段的任何东西都具有标签的三个阶段:辅助手动阶段,半自动阶段和全自动阶段。