1955 年 11 月,随着波士顿号航空母舰重新服役,制导导弹开始用于舰队防空。波士顿号航空母舰是一艘二战时期的巴尔的摩级重型巡洋舰,1955 年经过改装,可以搭载两套 TERRIER 导弹发射器(图 1)。她的姊妹舰堪培拉号航空母舰于 1956 年 6 月 15 日进行改装并重新服役。加尔维斯顿号航空母舰是一艘二战时期的克利夫兰级轻型巡洋舰,经过改装后可以搭载 TALOS 导弹,并于 1958 年 5 月重新服役,成为第一艘 TALOS 导弹舰。到 1960 年,美国导弹造船计划进展顺利,共有 8 艘作战巡洋舰:3 艘 TALOS 和 5 艘 TERRIER。另有三艘重型巡洋舰改装为具备 TALOS 能力,第一艘导弹巡洋舰 USS LONG BEACH 配备了 TA-
印度国防研究与发展组织 (DRDO) 首次成功试飞了搭载多弹头独立再入飞行器 (MIRV) 技术的本土研制的烈火-5 导弹。这项名为“Divyastra 任务”的飞行试验在奥里萨邦的 Dr APJ 阿卜杜勒卡拉姆岛进行。各种遥测和雷达站跟踪和监视多弹头再入飞行器。该任务完成了设计参数。总理纳伦德拉·莫迪对参与执行这一复杂任务的 DRDO 科学家的努力表示赞赏。他在社交媒体平台 X 上的一篇帖子中表示:“我们为 DRDO 科学家参加 Divyastra 任务感到骄傲,这是搭载多弹头独立再入飞行器 (MIRV) 技术的本土研制的烈火-5 导弹的首次飞行试验。” Raksha Mantri Shri Rajnath Singh 也向科学家和整个团队表示祝贺,称这是一次非凡的成功。'
AI Box 搭载多种深度学习和分析算法,是一款高性价比的人工智能计算产品,能够精准、即时地识别检测到的物体。因此,AI Box 是一个深度学习解决方案平台,能够实现人脸识别、人车管控、周界预警等人工智能应用。
慕尼黑轨道验证实验 (MOVE) 是一个立方体卫星学生项目,由慕尼黑工业大学火箭和太空飞行科学工作组负责。MOVE-III 是正在开发的第四颗立方体卫星,也是 MOVE 项目的第一个 6U 任务,将在轨道上搭载专门的科学有效载荷。该任务旨在获取低地球轨道亚毫米空间碎片和流星体的现场观测数据,目的是汇编一套通量数据集,以及物体质量和速度测量数据,可用于验证空间碎片模型的小物体估计值,并支持与空间环境特性相关的进一步研究。MOVE-III 立方体卫星采用 MOVE-BEYOND 平台,计划搭载三个碎片密度检索和分析 (DEDRA) 等离子体电离传感器。初步设计评审已于 2022 年初完成,下一个里程碑是关键设计评审,计划于 2023 年完成。本文阐述了任务的科学目标和预期的数据产品,概述了探测器的工作原理,并介绍了整个系统架构、平台配置和子系统交互。此外,还讨论了任务碎片减缓方面的考虑因素。
要确保软件的安全,就必须依靠内置安全性的硬件。正因如此,搭载 iOS、iPadOS、macOS、tvOS、watchOS 和 visionOS 的 Apple 设备在芯片中设计了安全功能。这些功能包括支持系统安全功能的 CPU,以及专用于安全功能的额外芯片。以安全为中心的硬件遵循支持有限且离散定义的功能以最大限度地减少攻击面的原则。这些组件包括启动 ROM(形成安全启动的硬件信任根)、专用 AES 引擎(用于高效安全的加密和解密)和安全区域。安全区域是 Apple 片上系统 (SoC) 上的一个组件,包含在所有最新款 iPhone、iPad、Apple TV、Apple Watch、Apple Vision Pro、HomePod 设备以及搭载 Apple 芯片的 Mac 和 Apple T2 安全芯片的 Mac 上。安全区域本身遵循与 SoC 相同的设计原则,包含自己的离散启动 ROM 和 AES 引擎。安全区域还为静态数据加密所需密钥的安全生成和存储提供了基础,并保护和评估 Optic ID、Face ID 和 Touch ID 的生物特征数据。
人工智能不再是未来的梦想。它已经到来,并正在改变当今的商业运作方式。随着员工迅速发现人工智能的新用例,他们需要一种能够满足新兴工作负载需求的体验。这就是为什么联想开发了业内最全面的人工智能设备和服务组合。首先是搭载英特尔® 酷睿™ 超强处理器和英特尔博锐® 的人工智能电脑。
Ai-M61-32S 是深圳市爱信可科技有限公司研发的一款 Wi-Fi 6+BLE5.3 模组。该模组搭载 BL618 芯片作为核心处理器,支持 Wi-Fi 802.11b/g/n/ax 协议和 BLE 协议,支持 Thread 协议。BL618 系统包含一个低功耗 32 位 RISC-V CPU,带有浮点单元、DSP 单元、缓存和内存,最高主频 320M。
本文介绍了一种新型编队飞行任务 Cal X-1 的相对导航和卫星间指向的误差预算。尽管进行了广泛的地面校准活动,但轨道 X 射线天文台的交叉比较表明,测量的天体源通量存在超过 10% 的系统性差异。Cal X-1 任务将通过使用一对编队飞行的 SmallSat 建立在轨 X 射线通量标准来解决这一问题。第一艘航天器将搭载一台 X 射线望远镜,而第二艘航天器将搭载一个绝对校准的 X 射线源。任务设计需要精确的卫星间指向,但由于尺寸、重量、功率和成本方面的限制,无法使用专用硬件。本文试图证明通过先进的相对导航技术可以满足具有挑战性的卫星间指向要求。高保真模拟展示了合适的相对导航系统的性能。接下来,开发一个数学模型,该模型考虑了相对导航、姿态确定和航天器结构组装引起的误差,以便计算指向知识误差。通过将该指向知识误差与 Cal X-1 任务的要求进行比较,证明了所提出的卫星间指向方法的可行性。
太空系统司令部 (SCC) 准备在 NASA 肯尼迪航天中心 (KSC) 空间站处理设施 (SSPF) 中执行太空测试计划 - 休斯顿 9 号 (STP-H9) 任务,该任务包含八个国防部太空测试计划 (STP) 实验有效载荷,之后将移交给 NASA,于 3 月 14 日在佛罗里达州肯尼迪航天中心搭载 SpaceX 的商业补给服务 (CRS)-27 任务发射。(照片由国防部太空测试计划提供)
2020 年 9 月,Corvus Energy 宣布已被 Holland Ship Electric 选中,为该造船集团为阿姆斯特丹市政公共交通提供商 GVB 建造的五艘新型全电动渡轮提供锂离子电池储能系统 (ESS)。第一艘船长 41 米,宽 13.9 米,可搭载 20 辆汽车、4 辆卡车和 400 名乘客,将于 2021 年投入使用。它将采用上层建筑和铝制栏杆代替钢材,以减少维护。