生物医学应用的材料选择通常基于其本体特性。由于材料的表面特性通常不符合生物相容性,因此采用了两种不同的方法:改性本体材料或涂覆涂层。本体材料的改性包括加入添加剂或使用复合材料来提高生物相容性。这种方法主要用于可生物降解材料的开发 [3]。另一种选择是对材料进行涂层处理。生物医学应用中通常使用不同类型的涂层。这样的例子有体内和体外使用的不同聚合物材料,这些材料涂有亲水涂层 [4],承重金属植入物需要表面涂层来改善其与周围组织的相互作用 [5]。
•改性的活疫苗(MLV):是一种活的,但弱化的病毒版本,用于刺激免疫反应。•杀死的疫苗:是病毒的一种不活跃的形式,所有传染性细菌都取出并杀死。
玻璃离子牙科水泥 (GIC) 是一种具有抗龋活性的美观直接修复材料。玻璃离子由铝硅酸盐玻璃粉和聚丙烯酸液体组成。在修复材料中,GIC 的显著特点是它们能够无需任何预处理即可与湿润的牙齿结构粘合,并提供长时间的氟化物释放,从而防止随后的蛀牙 (龋齿)。这些特性,加上材料可接受的美观性和生物相容性,使它们在医疗和牙科应用中广受欢迎和理想。然而,GIC 表现出较差的机械性能和湿度敏感性。为了提高其机械和物理性能,GIC 粉末经过了大量的配制和改性。本文概述了用于增强 GIC 机械和物理性能的各种填料。关键词:牙科玻璃离子水泥、复合体、树脂改性 GIC、Giomer、纳米粒子
在本研究中,我们报告了表面改性活性炭 (AC) 的合成。活性炭的表面已使用银纳米粒子进行改性。合成过程简单、成本有效且环境友好。改性 AC 粉末已使用 X 射线衍射、扫描电子显微镜和表面积和孔径测量进行了表征。通过使用镁离子基聚合物电解质制造 EDLC 的对称配置,测试了所制备材料的电化学性能。使用循环伏安法、电化学阻抗谱和恒电流充放电技术对电池进行了测试。含有 3 wt% 银的 AC 呈现出最佳效果,比电容约为 398 F g − 1 能量密度,功率密度为 55 Wh kg − 1 和 2.4 kW kg − 1,使其成为超级电容器应用的有趣材料。
为解决复合相变储热材料在建筑节能中的应用问题,作者提出将纳米复合储能材料应用于绿色建筑设计。采用混酸氧化球磨法制备改性碳纳米管,并与硬脂酸复合制备相变储热材料。采用混酸氧化球磨法制备改性碳纳米管,并与硬脂酸复合制备相变储热材料。实验结果表明,酸化碳纳米管对硬脂酸分子段的热扩散产生阻碍作用,使得添加质量分数1%的碳纳米管的热导率仅为纯硬脂酸的1.3倍。结论纳米复合储能材料在绿色建筑设计中具有良好的应用前景。
基因驱动改性生物NIH修改了NIH指南,以确保在包含的研究环境中涉及基因驱动改性生物(GDMO)的持续负责任研究。更改在2024年9月底生效。具体来说,NIH指南将被修改为:1。阐明涉及基因驱动改性生物(GDMO)的研究的最低遏制要求; 2。提供了风险评估的注意事项; 3。为IBC和BSO定义了其他机构责任。除了与涉及GDMO的研究相关的修正案外,NIH指南还将修改为:4。在更广泛的术语“ helper systems”中,“'helper viruse''一词“ helper viruse'”一词; ‘‘在存在辅助系统(例如,辅助病毒,包装细胞系,瞬态转染系统,复制系统)的情况下,应考虑复制或产生复制能力的病毒的潜力。'和5 ..重新分类西尼罗河病毒(WNV)和圣路易斯脑炎病毒(SLEV)为风险2组2剂,以与BMBL提供的遏制指导一致。基因驱动改性生物(GDMO)的基因驱动器定义:I-E-7节。“基因驱动器”被定义为一种技术,其特定的可遗传元素偏向于继承,从而导致可遗传的要素变得比孟德尔(Mendelian)在后代中人口中的继承法所预测的更为普遍。与GDMO的现场释放或现场合作不允许:NIH当前不支持GDMO的现场发布,而NIH指南与包含研究有关。耶鲁生物安全委员会授权后,必须在研究,植物或动物研究实验室中进行所有涉及GDMO的研究。GDMO研究必须由耶鲁生物安全委员会GDMO研究进行注册和批准,不受NIH指南的豁免:遵守NIH指南的研究,包括使用GDMO进行的研究,需要由IBC进行审查和批准,该IBC已在NIH Science Office of Science Polition of Initiation启动之前已注册。
摘要:聚合物胶束是具有核壳结构的两亲聚合物的纳米级组装体,已被用作各种治疗化合物的载体。它们因具有溶解难溶性药物的能力、生物相容性以及通过增强渗透性和保留性 (EPR) 在肿瘤中积累的能力等特殊性质而受到关注。此外,可以通过进一步改性为胶束提供额外的功能。例如,使用靶向配体对胶束表面进行改性可以实现特定靶向和增强肿瘤积累。刺激敏感基团的引入导致药物响应环境变化而释放。本综述重点介绍了多功能聚合物胶束在癌症治疗领域的发展进展。本综述还将介绍一些用于肿瘤成像和治疗诊断的多功能聚合物胶束的例子。
近年来,氧化石墨烯纳米片 (GO) 被广泛研究用作水中多种有机分子和重金属离子的吸附剂。1–3 与其他碳基纳米材料(如标准工业吸附剂活性炭)相比,丰富的表面化学基团加上较大的吸附表面积,使其对几类污染物(包括新兴污染物)的吸附动力学和效率更快。4 这些污染物因其在水体中的持久性、流动性以及健康和环境毒性而备受关注。5–7 GO 纳米片的羧基和羰基在有机分子的吸附效率中起着重要作用,因为它们能够形成氢键和金属离子络合。2,3 此外,可以利用此类表面基团的化学改性来提高选择性吸附能力。例如,据报道,聚乙烯亚胺 (PEI) 改性是一种成功的策略,可以利用 p 堆积、络合和
Div> A Department of Chemistry, Faculty of Mathematics and Natural Science, University of North Sumatra, Medan, 20155, North Sumatra, Indonesia B Center of Excellent Chitosan and Advance Materials, University of North Sumatra, 20155, Medan, Indonesia C Department of Pharmacology and Therapeutics, Faculty of Medicine, University Mechanical Engineering, Faculty of Engineering, Mercu Buana University, West Jakarta, Indonesia E伦敦大学学院材料发现研究所,伦敦大学学院,WC1E 7JE,英国f物理学系,数学和自然科学学院,化学工程学院,化学工程,工程学院,麦加塞拉比大学,麦加,麦卡,班达·阿塞23245
描述:本研究的目的是评估具有基因改性干细胞(自体干细胞移植)治疗镰状细胞病的长期安全性和能力。参与者必须在由Bluebird Bio赞助的临床研究中接受BB1111的研究基因治疗。没有其他