生物技术涵盖各种技术,使科学家能够操纵农作物的基因组成以获得所需的特性。例如,基因工程可以将特定基因引入植物,赋予植物抗虫、抗除草剂和改善营养成分等特性。分子标记通过标记辅助育种帮助选择所需特性,使育种者能够根据特定 DNA 序列的存在与否做出明智的决定。基因组编辑技术(例如 CRISPR-Cas9)提供了精确而有效的工具来修改植物基因组中的特定基因,为作物改良开辟了新的可能性 [2]。
摘要:根据世界卫生组织(WHO)的数据,诊断心脏病是一项伟大的任务,因为心脏病(HD)是全球最普遍的疾病。我们提出了一种基于心脏声音的方法来处理这一困难问题,因为心脏声音(HS)是检测心脏状况的重要组成部分。在建议的策略中使用了特征提取技术和分类器。我们使用GoogleNet卷积神经网络(CNN)结构进行一些修改,以将HS的最关键属性分开,并且根据这些属性,心脏病被分类为患病或未患病的患病。使用Adabelief Optimizer训练该模型,以调整我们修改的GoogLenet架构的参数。使用Physionet 2016的各种数据集对模型进行了培训和验证。通过将Pascal数据集与Physionet 2016数据集集成在一起,提供了其他培训样本。此外,来自各种来源的各种样本使我们的系统能够更准确地了解日常生活中的声音。我们的结果表明,使用Adabelief Optimizer进行修改的Googlenet架构,训练有素的模型分别在Physionet和合并数据集的看不见的HS录音中获得了100%和99.9%的测试精度。通过将我们提出的模型与这些数据集中的官员Physionet网站上列出的得分最高的方法进行比较,结果显示出显着改进。
加拿大至少有25万人患有轻度痴呆症,有130万人的认知障碍生活。1-3阿尔茨海默氏病与60%–70%的痴呆病例有关,而30%–77%的轻度认知障碍病例。4,5没有建议药物治疗加拿大的患者,患有轻度的认知障碍,但共识指南建议胆碱酯酶抑制剂(例如多诺普齐尔)用于症状治疗阿尔茨海默氏病引起的痴呆症治疗,并由阿尔兹氏症患者症状症状,对阿尔兹氏症的症状治疗。6在加拿大尚未批准针对阿尔茨海默氏病的疾病改良药物。我们讨论了最近已将疾病改良的阿尔茨海默氏病药物,这些药物已被推出并批准用于其他司法管辖区,因为这些药物可能在适当的时候可以在加拿大使用。在阿尔茨海默氏病的背景下,一种调整疾病的药物可减轻大脑中的淀粉样蛋白负担,从而减慢疾病的发展进展。在2021年,阿德省成为了第一个修改阿尔茨海默氏病的疾病,接受了美国食品药品监督管理局(FDA)的加速批准,这意味着,患有阿尔茨海默氏病的人可以很快获得阿德加尼亚司瘤,基于对临时性和无需临床效果的替代结果,可以很快获得阿德加尼亚蛋白酶,这是基于试验结果。aducanumab是人类单克隆抗体焦油淀粉样蛋白β骨料,包括可溶性低聚物和不溶性原纤维。根据淀粉样假说,可溶性和不溶性淀粉样蛋白β肽会触发级联,损害大脑中的神经元和突触,从而导致痴呆症。7淀粉样假说的真实性受到一些专家的质疑,因为例如,有些人有脑淀粉样蛋白负担,而没有认知能力下降。尽管如此,FDA在临床试验测试Aducanumab的疗效和对疾病修饰的阿尔茨海默氏病疾病的疾病中,在其对ADU-Canuumab Aclerered批准的生产中,对疾病修饰的药物治疗,对Aducanumab的功效进行了统计学显着改善,对Aducanumab的疗效进行了淀粉样蛋白负担,并对疾病修改的药物治疗。8,9 FDA批准Aducanumab是有争议的,因为它为加速批准了疾病改良的阿尔茨海默氏病药物设定了新的先例,但事后分析表明,Aducanumab的功效支持了这一批准。10相比,加拿大卫生部表示提交 -
技术会议 3:(主题 3-TS-3)基因组编辑:知识产权政策、产品开发的生物安全和社会经济考虑因素
肩突硬蜱,即黑腿蜱,是莱姆病螺旋体伯氏疏螺旋体的主要媒介,是美国每年约 47 万例莱姆病病例中的大多数是由其引起的。肩突硬蜱可以传播另外六种对人类健康有影响的病原体。由于其医学重要性,肩突硬蜱是第一个被测序和注释的蜱基因组。然而,由于节肢动物基因组特有的长重复基因组序列以及缺乏长读长测序技术所带来的技术挑战,第一个组装体肩突硬蜱 Wikel (IscaW) 高度碎片化。尽管由于胚胎注射和 CRISPR-Cas9 介导的基因编辑等新工具的出现,肩胛带蜱已成为蜱研究的模型,但缺乏染色体级支架减缓了蜱生物学的进展和控制工具的开发。在这里,我们结合了多种技术来制作肩胛带蜱 Gulia-Nuss (IscGN) 基因组组装和基因组。我们使用了来自卵和雄性和雌性成年蜱的 DNA,并利用 Hi-C、PacBio HiFi 测序和 Illumina 短读测序技术来制作染色体水平的组装。在这项工作中,我们展示了由 13 条常染色体和性假染色体组成的预测假染色体:X 和 Y,以及与现有组装和注释相比显着改进的基因组注释。
N. Takeda、Takafumi Hiramoto、Satoshi Tasaka、Hisato Hirano、Takeshi Tokuyama、Hideki Uosaki、Soh Ishiguro、Madina Kagieva、Hiroyuki Yamano、Yuki Ozaki、Daisuke Motooka、Hideto Mori、Yuhei Kirita、Yoshiaki Kise、Yuzuru Itoh、Satoaki Matoba、Hiroyuki Aburatani、Nozomu Yachie、Tautvydas Karvelis、Virginijus Siksnys、Tsukasa Ohmori**、Atsushi Hoshino** 和 Osamu Nureki** (*第一作者,**通讯作者) 〈DOI〉10.1016/j.cell.2023.08.031 〈 URL 〉https://doi.org/10.1016/j.cell.2023.08.031
方法:进行了一项随机、双盲、主动对照的 III 期临床试验,以比较改良的 Omicron 疫苗(Omicron 疫苗)与授权原型疫苗(CoronaVac®)作为加强剂量的效果。招募至少 6 个月前已接种 2 或 3 剂 CoronaVac(2C 或 3C 组)的 18 岁及以上健康成人,以 2:1(2C/3C+1O/1C)的比例接种 Omicron 疫苗或 CoronaVac 加强剂量。从之前的研究中收集了 26-45 岁成人接种两剂 CoronaVac(2C+0)后的备用血清。收集并分析了接种疫苗后 28 天的免疫原性和安全性数据。主要目标之一是评估 Omicron 疫苗加强剂对 Omicron BA.1 的免疫原性优势,以及 CoronaVac 加强剂对 BA.1 的免疫原性优势。另一个目标是评估 Omicron 疫苗加强剂对 BA.1 的免疫原性非劣效性,以及 CoronaVac 两剂初始剂量对祖先毒株的免疫原性非劣效性。
摘要:泛素硫酯酶 OTUB2 是一种来自卵巢肿瘤 (OTU) 去泛素酶超家族的半胱氨酸蛋白酶,在肿瘤进展和转移过程中经常过度表达。因此,OTUB2 抑制剂的开发被认为具有治疗重要性,但针对 OTUB2 的有效且选择性小分子抑制剂却很少。本文,我们描述了一种改进的 OTUB2 抑制剂 LN5P45 的开发,该抑制剂包含一个与活性位点半胱氨酸残基共价反应的氯乙酰肼部分。LN5P45 在活细胞中表现出出色的靶标参与度和蛋白质组范围的选择性。重要的是,LN5P45 以及其他 OTUB2 抑制剂强烈诱导 OTUB2 在赖氨酸 31 上的单泛素化。我们提出了未来 OTUB2 相关治疗的途径,并表明本研究开发的 OTUB2 抑制剂有助于揭示相关生物学的新方面,并开启有关理解 OTUB2 在翻译后修饰水平上的调控的新问题。■ 介绍
摘要 玉米(Zea mays ssp. mays)是当今世界产量最高的作物,广泛用作食品、饲料和各种工业产品的原料。玉米产量的不断提高是植物育种和现代农业成功的见证。在驯化和历史育种过程中,人类对其形态和生理性状进行了强烈的选择,以利于生态适应、产量和营养价值的提高以及收获。玉米功能基因组学研究的最新进展极大地深化和扩展了我们对玉米驯化和遗传改良的分子和遗传基础的认识。在本文中,我们总结了玉米驯化和驯化后遗传改良的关键性状和调控基因,并对如何利用这些知识来加速未来的玉米育种进行了前瞻性的展望。
人类谷氨酰胺基环酶(HQC)引起了人们的关注,并成为阿尔茨海默氏病(AD)的潜在毒靶标,这是由于它通过翻译后的硫酸盐酸谷氨酸型淀粉样蛋白βββββββββ杆菌的临时涉及AD的病理。最近的2A期研究表明,基于竞争性苯咪唑的QC抑制剂PQ912,AD的效率的早期证据有希望,这也表现出了有利的安全性。这个发现引发了对AD治疗的新希望。在这篇综述中,我们构成了概述HQC抑制剂的发现和演变,对经典锌结合组(ZBG)的含量尤其感兴趣 - 近年来报道的化学物质。此外,我们重点介绍了几种高功率抑制剂,并讨论了QC抑制剂开发的新趋势和挑战,作为AD的替代性和有希望的疾病调整疗法。