P-糖蛋白 (P-gp) 是一种转运蛋白,可将多种结构上不相关的药物从细胞中排出。这种外排转运蛋白限制了各种抗癌药物、抗 HIV 药物、钙通道药物和其他作为底物的药物的生物利用度。肿瘤细胞中 P-gp 的过度表达会导致多药耐药性。许多抗癌药物(包括紫杉醇、长春新碱、长春花碱、放线菌素 D、秋水仙碱和柔红霉素)从肿瘤细胞中排出,使 P-gp 成为化疗的主要障碍。这种转运蛋白在血脑屏障 (BBB) 上的高表达限制了 P-gp 底物(如利托那韦、沙奎那韦、奈非那韦等抗 HIV 药物和各种抗癌药物)进入大脑,从而对治疗各种脑部疾病提出了重大挑战。
异环磷酰胺 > 42 g/m 2 > 60 g/m 2 放线菌素 D >12.2 mg/m 2 4 苯丁酸氮芥 14.286 丙卡巴肼 > 3 g/m 2 > 4 g/m 2 卵巢放射治疗剂量* > 100 cGy > 1000 cGy 5 BCNU 15 苯丁酸氮芥 > 1.4 g/m 2 *与年龄有关(见列线图 5 )^贝伐单抗可导致卵巢衰竭;可能仅为急性和短暂性 6 1. Green Pediatr Blood Cancer 2014;61(1):53-67 2. Van der Kaaji J Clin Oncol 2012;30(3):291-299 3. Solheim Gyne Oncol 2015;136(2):224-229 4.Van Den Berg Hum Reprod 2018; 33(8):1474-1488 5. Wallace Int J Radiat Oncol;62(3):738-744 6. Imai Molec Clin Oncol 2017;6:807-810
黑色素瘤 黑色素瘤是一种皮肤癌,可扩散到身体的其他器官。黑色素瘤是英国第五大常见癌症,每年约有 13,000 例新诊断黑色素瘤病例。超过四分之一的病例发生在 50 岁以下的人群中,与大多数其他类型的癌症相比,这是不寻常的。随着时间的推移,黑色素瘤在英国也变得越来越常见,被认为是由于增加暴露于太阳和日光浴床的紫外线 (UV) 所致。英国每年有超过 2,000 人死于黑色素瘤。在大多数情况下,黑色素瘤形状不规则,颜色不止一种。它们也可能比正常的痣大,有时会发痒或出血。当皮肤中的一些细胞开始异常发育时,就会发生黑色素瘤。人们认为,暴露于天然或人工光源的紫外线 (UV) 可能是部分原因。 诊断黑色素瘤 在大多数情况下,可疑的痣将被手术切除并进行研究以确定其是否是癌症。这被称为活检。患者还可能接受检查以检查黑色素瘤是否已扩散至身体其他部位。这被称为前哨淋巴结活检。治疗黑色素瘤黑色素瘤的主要治疗方法是手术,尽管治疗方法取决于具体情况。如果黑色素瘤在早期得到诊断和治疗,手术通常可以成功。如果黑色素瘤在晚期才被诊断出来,治疗主要是为了减缓癌症的扩散和减轻症状。这通常涉及药物,例如使用放线菌素 D 等药物进行化疗。
摘要目的:局部肿瘤进展是无法手术切除的胰腺导管腺癌 (PDAC) 患者发病率和死亡率显著上升的原因。迫切需要实现持久局部控制的新型有效方法。我们测试了 CPI-613 (devimistat)(一种首创的线粒体代谢小分子研究抑制剂)是否能够改变癌细胞能量代谢并使 PDAC 细胞对放射治疗 (RT) 敏感。方法和材料:分别使用台盼蓝染料排除试验、菌落形成试验和 7-氨基放线菌素 D 试验确定 RT 与 CPI-613 联合治疗对 PDAC 细胞 (MiaPaCa-2 和 Panc-1) 活力、克隆形成潜力和细胞死亡诱导的影响。使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物和球状体形成试验测量了 CPI-613-RT 和化疗药物(吉西他滨或 5-氟尿嘧啶)在 MiaPaCa-2 细胞中的协同作用。使用液相色谱-质谱法分析用 RT、CPI-613 或两者处理的代谢物,以确定能量代谢的变化。结果:本研究表明,与单独使用 RT 相比,单次分次 RT(2 和 10 Gy)与 CPI-613 的组合显著抑制了 PDAC 细胞生长。分子分析显示,α-酮戊二酸脱氢酶在蛋白质水平上受到抑制。此外,我们证明,当用 RT-CPI-613 组合处理时,PDAC 细胞的细胞死亡率增加。对接受 CPI-613-RT 治疗的 PDAC 细胞进行靶向代谢组学分析,发现关键线粒体代谢物发生了改变,并且
sof umer洞穴是一个未开发的极端环境,可容纳新型微生物和潜在的遗传资源。来自洞穴的微生物组已被遗传适应以产生各种生物活性代谢产物,使它们能够生存并耐受苛刻的结合。然而,尚未探索Sof umer Cave微生物中与生物合成相关的基因簇标志。因此,使用高通量shot弹枪测序来探索sof umer Cave的微生物组中与生物合成相关的基因簇(BGC)。Geneall DNA土壤迷你试剂盒用于从均质样品中提取高分子量DNA,并使用Novaseq PE150对纯化的DNA进行测序。根据微-RN数据库,乌默洞穴中最常见的微生物属是原细菌,静脉细菌,verrucomicrobobiota和蓝细菌。对与生物合成相关的基因簇进行了注释并分类,并使用抗石和NAPDOS1预先对BGC进行预令。确定了编码广泛的二级代谢物的BGC的460个推定区域,包括RIPP(47.82%),萜烯(19.57%),NRPS(13.04%),杂种(2.18%)和其他新的注释(10.87%)com punds。此外,NAPDOS管道还从链霉菌素的链霉菌素(链霉菌素基因肌链霉菌素)中鉴定出钙依赖性的抗生素基因簇,来自链霉菌Chrysomallus的放线菌素基因簇和来自链霉菌链霉菌的博霉素基因簇。这些发现突出了Sof Umer Cave微生物组的未开发的生物合成潜力,以及其发现天然产物的潜力。
根据世界卫生组织 (WHO;https://www.who.int/whr/1996/media_centre/press_release) 的数据,传染病每年导致 1700 多万人死亡。其中,由抗菌素耐药性 (AMR) 细菌引起的医源性感染越来越难以治疗,威胁着我们在医疗保健和预期寿命方面的进步,并在全球范围内产生了巨大的社会和经济影响 (https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance)。仅在欧洲,AMR 每年导致 33,000 人死亡,医疗保健和生产力损失达 15 亿美元 (EU Commission, 2017; Cassini et al., 2019)。美国每年发生超过 280 万例 AMR 感染,超过 35,000 人因此死亡 (CDC, 2019)。患有 AMR 感染的患者可能需要住院超过 13 天,每年增加 800 多万住院日 ( Ventola, 2015 )。当前应对这种令人担忧的情况的策略包括投资研发新抗生素。癌症是全球发病和死亡的另一大原因;2015 年癌症造成 880 万人死亡。与 AMR 感染类似,人们几十年前就认识到对经典癌症化疗药物和/或新型靶向药物的耐药性,这是化疗在癌症治疗中取得成功的重大障碍。显然,治疗感染和癌症的最大挑战是治疗耐药性和缺乏新的抗菌或抗癌药物。微生物本身是抗生素/抗癌药物最丰富的来源,而目前未知或无法培养的细菌是新型生物活性分子的最大来源之一。抗菌和抗癌药物均可从自然环境或肠道菌群中的细菌中获得,而放线菌素 D 和博来霉素等一些药物可能具有双重抗菌和抗癌特性(Karpinski 和 Adamczak,2018 年)。本研究主题中发表的论文(七篇研究文章和三篇评论)进一步证实了天然细菌中具有抗菌和抗癌特性的生物活性分子的多样性,如下文所述。
图 1.1. 天蓝色链霉菌线性基因组的表示。 ........................................................................... 2 图 1.2. 天蓝色链霉菌的发育生命周期 .............................................................................. 4 图 1.3. 来自链霉菌的抗生素的主要发现和日期。 ...................................................................... 11 图 1.4. 放线菌紫红素的生物合成。 ............................................................................................. 15 图 1.5. 普罗地金胺的生物合成。 ............................................................................................. 18 图 1.6. 参与调节天蓝色链霉菌次级代谢的双组分系统。 ............................................................................................. 22 图 1.7. 参与调节天蓝色链霉菌次级代谢的单组分和多组分系统。 ............................................................................................. 26 图 1.8. 激活次级代谢产物产生的遗传策略。 ............................................................................................. 31 图 1.9.激活次级代谢产物产生的合成策略。................................................................................................................ 33 图 1.10. 激活次级代谢产物产生的生态策略。...................................................................................................... 36 图 1.11. 激活次级代谢产物产生的化学策略。...................................................................................................... 38 图 2.1. ARC2 系列抑制脂肪酸生物合成途径中的 FabI (Craney 等,2012)。............................................................................................................................................. 43 图 2.2. ARC2 全面改变天蓝色链霉菌 M145 中的基因表达。............................................................................................. 45 图 3.1. 天蓝色链霉菌中涉及 AfsK/R/S 的信号转导途径的当前模型............................................................................................. 88 图 3.2. 响应 ARC2,P afsS - lux 和 P actII-ORF4 - lux 活性增加。 .................. 89 图 3.3. D afsR 和 D afsS 中的放线菌紫素生成受到影响 .............................................. 90 图 3.4. D afsK 中的放线菌紫素生成不受影响 ........................................................ 90 图 3.5. D afsR 和 D afsS 中的 ARC2 反应受到影响 ............................................................. 92 图 3.6. D afsK 中的 ARC2 反应不受影响 ............................................................................. 93 图 4.1. 天蓝色链霉菌基因组上的 afsK 、 afsR 和 afsS 基因的组织以及 AfsS 蛋白序列。 ............................................................................................................. 99 图 4.2. AfsS 是一种具有三个序列重复的保守蛋白。 ............................................................................. 100 图 4.3.AfsS 被预测为一种高度无序的蛋白质。 ........................................................................................... 101 图 4.4. AfsS 序列重复中的点突变损害了基础的放线菌素产生。 ......................................................................................................................... 102 图 4.5. D afsS[ermE *: afsS D31A ] 中的 ARC2 反应受到损害。 ............................................................................. 103 图 A1.1. 小家鼠 PkA 和结核分枝杆菌 PknB 的催化激酶结构域的一级序列比对 . ................................................................................................ 156 图 A1.2. 天蓝色链霉菌 M600 D SCO3820::apr 中的 ARC2 反应受到损害。 ......................................................................................................................... 160 图 A1.3. SCO6219 催化激酶结构域与天蓝色链霉菌的丝氨酸/苏氨酸激酶没有高度同源性。 ........................................................................................... 162 图 A1.4. AfsK、PkaG 和 SCO6219 中的蛋白质结构域预测摘要。 ............................................................................................. 167 图 A1.5. SCO3820 的缺失呈现天蓝色链霉菌 M145 的两种不同表型。 ........................................................................................................................... 168 图 A2.1. 委内瑞拉链霉菌基因组上的 afsR 和 afsS 直系同源物以及 AfsS Sv 蛋白序列的组织。 ........................................................................................... 183 图 A2.2. AfsS Sv 样蛋白在链霉菌中是保守的。 ........................................................................... 185 图 A2.3. AfsS Sv 被预测为一种无序蛋白质。................................................................ 186AfsK、PkaG 和 SCO6219 中的蛋白质结构域预测摘要。 ...................................................................................................................................... 167 图 A1.5. SCO3820 的缺失呈现了天蓝色链霉菌 M145 的两种不同表型。 ............................................................................................................................................. 168 图 A2.1. 委内瑞拉链霉菌基因组上的 afsR 和 afsS 直系同源物的组织以及 AfsS Sv 蛋白序列。 ............................................................................................................. 183 图 A2.2. AfsS Sv 样蛋白在链霉菌中是保守的。 ............................................................................................. 185 图 A2.3. AfsS Sv 被预测为无序蛋白。 ............................................................................................................. 186AfsK、PkaG 和 SCO6219 中的蛋白质结构域预测摘要。 ...................................................................................................................................... 167 图 A1.5. SCO3820 的缺失呈现了天蓝色链霉菌 M145 的两种不同表型。 ............................................................................................................................................. 168 图 A2.1. 委内瑞拉链霉菌基因组上的 afsR 和 afsS 直系同源物的组织以及 AfsS Sv 蛋白序列。 ............................................................................................................. 183 图 A2.2. AfsS Sv 样蛋白在链霉菌中是保守的。 ............................................................................................. 185 图 A2.3. AfsS Sv 被预测为无序蛋白。 ............................................................................................................. 186