摘要本文探讨了在空间,时间和监管方面之间的灵活性增强如何影响经济成本和CO 2整合了来自风和太阳能的大量可再生能源的大量份额。我们开发了一个数值模型,该模型在互连的批发电力市场,跨国贸易(SPATIAL灵活性),能源存储(暂时灵活性)和可交易的绿色配额(法规灵活性)中,在异质能源技术和自然资源之间进行小时调整和投资选择。将模型纳入欧洲相互联系的电力市场体系的数据,我们发现,适当的灵活性组合可以带来可观的经济效率,降低成本(高达13.8%)和降低CO 2 Emisions(最高可达51.2%)。监管灵活性对于实现大多数最大可能的收益是必要的。我们还发现,提高灵活性的收益分布不均匀,一些国家会造成福利损失。
摘要:在本文中,提出了一种详细的三维,瞬态,有限的元素方法链接链接nh000 gg 100 a。在名义(100 a)和自定义条件(110和120 a)下进行保险丝运行过程中的热性能是进行分析的主要重点。工作涉及保险丝链接(陶瓷体)的外部元素和内部(当前电路)的元素。已经描述了电流的分布及其对操作模式期间保险丝构造部分温度的影响。使用数值模型测量温度分布,功率损耗和能量耗散。为了验证和验证模型,两个独立的科学家团队执行了实验研究,在此期间,在涉及额定电流的设备的不同部分上测量了温度。最后,将两组结果组合在一起,并将其与从仿真测试中获得的结果进行了比较。强调了经验测试结果与模拟工作之间可能的显着相关性。
数值模型是理解大气,土地和海洋表面之间复杂相互作用的重要工具,为暴风雨,洪水,热浪和干旱等极端事件提供了重要的见解。随着此类事件的频率和强度由于气候变化而增加,了解其潜在的物理机制并预测其发展变得比以往任何时候都变得更加重要和具有挑战性。本期特刊将着重于将数值建模应用于极端天气事件及其对气候变化的更广泛含义。我们希望贡献能够探索各种类型的模型,从全球和区域气候模型到高分辨率,基于过程的模拟。主题可能包括模型准确性,不确定性量化,耦合系统的作用以及人工智能和整体方法的整合以增强模型功能的整合。期望特殊问题将证明这些模型不仅如何改善预测,还如何评估气候变化风险,为政策提供信息和指导适应策略。
可以通过一种新型的“增材制造 - 压缩成型”技术来实现用短碳纤维增强的高性能热塑性复合材料。这种组合的优势是两倍:添加剂制造中的受控纤维取向,通过压缩成型含量较少。在这项研究中,已经开发了一个计算流体动力学模型,以预测纤维增强的热塑性挤出和随后的压缩成型过程中印刷层的行为。使用简单的二次闭合模型对纤维方向进行建模。使用旋转扩散系数包括纤维之间的相互作用,该系数在浓缩方案中变得显着。最后,第二等级方向张量与动量方程作为应力项的各向异性部分。研究了印刷层中不同纤维取向的影响,以确定随后经历压缩成型的链中的有利印刷场景。开发的数值模型可以设计具有可调机械性能的高性能复合材料。
我们从理论上研究了三端约瑟夫森连接中的超导二极管效应。超导系统中的二极管效应通常与在相反方向流动的电流的临界电流存在差异有关。我们表明,在多末端系统中,这种效果自然发生,而无需任何自旋相互作用,这是由于携带超恒星的Andreev结合状态之间存在相对移位的结果。在一个三末端交界处的示例中,我们证明了一个超导接触中的非重点电流可以通过对其他触点的适当相位偏置来诱导,前提是系统中至少有两个Andreev绑定状态,并且系统的对称性被打破。在描述短期和长时间连接的数值模型中证实了此结果。通过优化连接点的几何形状,我们表明已实现的超导二极管的效率超过35%。我们将预测与对多末端连接的最新实验相关联,在该实验中,观察到非相互超电流。
摘要。隧道内所有配备智能通风系统的主要和辅助设备都是为了确保安全而设计的。这些系统相互“对话”和“倾听”,决定打开/关闭某些系统或部分系统,并及时通知隧道运营商,隧道运营商有权对所有必要系统进行集中控制。本文使用数值模型来评估可变形元件确保隧道安全运行的效率。使用它们的理念是基于通过柔性元件人为增加隧道的气动阻力,这将阻碍燃烧产物的扩散,但不妨碍人们通过隧道的移动,并有助于隔离干净和污染的气团。这种阻力将用于迅速将隧道车道分成更小的部分,这将有助于在火灾初期尽早扑灭火灾,延长疏散时间并在无法控制的强烈火灾中挽救生命。至于紧凑型可变形元件,它可以用于运营隧道和规划隧道,因为它在实践中不会减少宝贵的地下空间的体积。
本文报道了钙钛矿太阳能电池的数值模型,该电池与分布式布拉格反射器对相结合以获得高能量效率。提出的电池的几何形状用三种不同的钙钛矿材料模拟,包括 CH 3 NH 3 PbI 3 、 CH 3 NH 3 PbBr 3 和 CH 3 NH 3 SnI 3 。与无毒钙钛矿材料相比,基于碘化铅和溴化铅的有毒钙钛矿材料似乎更有效。具有最高效率结构执行的模拟光伏参数为开路电压 = 1.409 (V)、短路电流密度 = 24.09 mA/cm 2 、填充因子 = 86.18% 和效率 = 24.38%。此外,对当前研究与不同类型结构进行了比较,令人惊讶的是,我们的新几何形状具有增强的性能参数,这些参数以背反射器对(Si/SiO 2 )为特征。应用的数值方法和所呈现的几何设计努力有利于获得有可能解决效率较低的薄膜太阳能电池问题的结果。
本文提供了一项长期研究的第一个结果,该研究旨在提高使用航天器等离子相互作用系统软件的电推进诱导的电动推进诱导航天器充电的数值建模技术的有效性。欧洲航天局Bepicolombo任务的前数值模型及其输出作为模型当前功能和局限性的基准示例。证明,代码可以通过模拟电推进系统,推进器生成的等离子体以及暴露于空间的航天器系统之间的动态相互作用来获得航天器充电平衡。通过比较不同的多环反应指数的模拟,显示了在自由扩展推进器等离子体中对电子冷却的物理描述的重要性。它特别突出了将整个等离子体视为等温的不足。具有数值和物理参数的仿真输出的变异性为未来设计建模的未来改进和对等离子体推进器诱导的充电过程的理解铺平了道路,通过将来与可用的旋转遥控器进行比较。
n 型 Ge/SiGe 量子阱被认为是实现 Si 兼容 THz 激光器的有前途的平台。针对这一材料系统,我们开发了一个数值模型来描述子带间载流子动力学,该动力学在非对称耦合 Ge/SiGe 量子阱中脉冲光激发后恢复平衡。我们考虑了非弹性和弹性散射过程,并研究了不同的量子阱几何形状、掺杂密度和激发方式。在这个配置空间中,我们解开了对每个散射通道整体动力学的影响,并提供了子带间弛豫时间,发现相对于 III-V 基材料,由于相对于 III-V 化合物,电子-声子耦合较弱,因此其值较大。最后,该模型用于研究和优化第一和第二激发子带能级之间的粒子数反转,并评估其对晶格温度的依赖性,为指导即将进行的实验提供了可靠的理论框架。
摘要。本文介绍了为模拟不锈钢 SS316L 定向能量沉积中形成的熔池中的流体流动和传热而开发的数值模型。该模型结合了重要的热量和动量源项。能量源项包括激光能量、相变潜热、对流热损失、辐射热损失、蒸发热损失以及由于熔融颗粒沉积到熔池中而增加的能量。动量源项是由表面张力效应、热毛细(Marangoni)效应、热浮力、相变引起的动量衰减、熔融颗粒动量以及由于蒸发引起的反冲效应引起的。模拟表明,熔池中预测的流动和传热会影响最终的形状和尺寸。在当前采用的工艺参数下,熔池细长、宽而浅,具有凹陷的自由表面和向外的对流。向外流动是由熔池中心的高温主导区域引起的,因此表面张力的温度梯度为负。