公里(公里),到达数千公里的飞机和船只,以及许多兆瓦(MW)的电源输出。没有任何一家技术会支持所有这些应用程序中的脱碳化,并且很可能需要在扇区中需要多个解决方案来满足用户需求的范围。的确,对单个解决方案的依赖会带来许多风险,尤其是在技术正在开发的地方。例如,该技术可能最终无法满足市场需求,而没有其他解决方案,或者引入该技术的时间可能意味着要满足短期至中期脱碳的要求是必要的。
双场 (TF) 量子密钥分发 (QKD) 从根本上改变了 QKD 的速率-距离关系,提供了单节点量子中继器的扩展。尽管最近的实验已经证明了 TF-QKD 为安全长距离通信提供了新的机会,但要释放其真正的潜力,仍然存在艰巨的挑战。之前的演示需要与量子信号波长相同的强稳定信号,从而不可避免地产生限制距离和比特率的瑞利散射噪声。在这里,我们介绍了一种新颖的双波段稳定方案,该方案克服了过去的限制,并且可以适应其他相位敏感的单光子应用。通过使用两种不同的光波长复用在一起以实现信道稳定和协议编码,我们开发了一种装置,该装置分别在有限尺寸和渐近范围内在创纪录的 555 公里和 605 公里的通信距离上提供类似中继器的密钥速率,并将长距离安全密钥速率提高了两个数量级,达到具有实际意义的值。
量子密钥分发 (QKD) 是基于物理学基本定律分发秘密比特的技术,它能够实现信息论安全通信,而不受潜在窃听者无限计算能力的影响 1 。在过去的三十年中,QKD 引起了广泛关注,并且已经发展成熟,可以在光纤网络上进行实际部署 2、3 。然而,信道损耗阻碍了 QKD 的广泛应用,从而限制了密钥速率和 QKD 范围的提高 4 – 7 。在 QKD 系统中,作为量子密钥载体的光子是在单光子级别准备的,大部分会被传输信道散射和吸收。然而,它们无法被放大,因此接收方检测到它们的概率非常低。对于从发射机到接收机的直接光纤链路,密钥速率随着传输距离的增加呈指数下降,并且不能超过基本速率-距离极限 O(η),其中 η 表示链路的透射率 8、9。双场 (TF) QKD 建立了一个有前途的速率-距离关系 O(√η),从而无需量子中继器即可克服这一限制,并且即使在长距离上也能实现相当大的密钥速率 10。人们做出了巨大努力来发展其理论 11 – 28 并通过实验展示其独特的优势 29 – 39。参考文献 11 和 12 首先证明了 TF-QKD 的普遍安全性,然后基于参考文献 11 在 502 公里超低损耗 (ULL) 光纤上实现了实验 33。通过消除代码模式中的全局相位随机化和相位后选择,提出了另一种称为无相位后选择 (NPP) TF-QKD 的变体 14 – 16,并在多个实验 30、32、35 中进行了演示。由于代码模式中的所有检测事件都用于密钥生成,因此 NPP TF-QKD 可以实现相对较高的密钥速率,例如,在 300 公里光纤上实现 2 kbps 的渐近密钥速率 30。同时,
量子密钥分发可以提供能够抵御量子计算机破译的安全密钥。连续变量版本的量子密钥分发具有在大都市地区密钥速率更高以及可以使用可在室温下工作的标准电信元件的优势。然而,这些系统的传输距离(与离散变量系统相比)目前有限,并且被认为不适合长距离分发。在此,我们报告了通过适当控制过剩噪声和采用高效协调程序在 202.81 公里超低损耗光纤上进行长距离连续变量量子密钥分发的实验结果。这种破纪录的连续变量量子密钥分发的实现使之前的距离记录翻了一番,并指明了使用室温标准电信元件进行长距离和大规模安全量子密钥分发的道路。
摘要对第三极的当前和未来水周期的准确理解至关重要,因为该地区作为下游人口稠密地区的水塔起着作用。在复杂地形区域进行熟练气候评估的一种新兴而有希望的方法是公里尺度的气候建模。作为迈向第三极上此类模拟的基本步骤,我们提出了2019年10月至2020年9月的水文年度的千里规模区域模拟的多模型和多物理合奏。该合奏由由10个研究小组的国际联盟进行的13个模拟组成,配置了覆盖所有第三极区域的水平网格间距,范围为2.2至4 km。这些模拟是由ERA5驱动的,并且是协调的区域气候缩减实验旗舰试验研究的一部分。将模拟与可用的网格和原位观测和遥感数据进行了比较,以评估模型集成的性能和传播,与寒冷和温暖的季节的驾驶重新分析相比。尽管在该区域的网格降水数据集之间的巨大差异使整体评估受到阻碍,但我们表明,与ERE5相比,许多温暖的季节降水指标改善了合奏,包括大多数湿日和小时统计数据,并且在两个季节的湿法范围内都增加了价值。因此,合奏将为对该遥远但重要区域的氢化气候的过程的未来改进提供宝贵的资源。
Mohamed Benyoucef, h Yong-Heng Huo, b,c Sven Höfling, f Qiang Zhang, b,c,d Chao-Yang Lu, b,c,i, * 和 Jian-Wei Pan b,c, * a 中国科学技术大学,网络空间安全学院,合肥,中国 b 中国科学技术大学,合肥微尺度物质科学国家实验室,现代物理系,合肥,中国 c 中国科学技术大学,中科院量子信息与量子物理卓越中心,上海,中国 d 济南量子技术研究所,济南,中国 e 中国科学院,上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海,中国 f 维尔茨堡大学,技术物理,物理研究所和威廉康拉德伦琴复杂材料系统中心,维尔茨堡,德国 g 奥尔登堡大学,物理研究所,德国奥尔登堡 h 卡塞尔大学纳米结构技术与分析研究所,CINSaT,德国卡塞尔 i 上海纽约大学-华东师范大学物理研究所,中国上海
预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <
针对编码基因组通过CRISPR/ CAS9技术引入核苷酸缺失/插入已成为一种标准程序。它迅速产生了多种方法,例如素数编辑,顶点接近标记或同源性修复,但是,支持生物信息学工具的支持落后于此。新的CRISPR/CAS9应用程序通常会重新征询特定的GRNA设计功能,并且通常缺少一种通用工具。在这里,我们介绍了R/生物导体工具MulticRispr,旨在设计单个grnas和复杂的grna libraries。包装易于使用;在效率和特定的效率上,检测,分数和锻炼;每个目标或CRISPR/CAS9序列可视化和聚集结果;最后返回GRNA的范围和序列。是通用的,多晶状体定义的,并实现了基因组算术框架,作为便利适应最近引入的技术的基础,例如素数编辑或尚未出现。其性能和设计构想(例如目标集) - 特定过滤渲染多晶层在处理类似筛选的方法时选择的工具。
脑计划细胞普查网络 (BICCN) 于 2023 年 12 月 13 日在《自然》杂志上发布了《全鼠脑图谱》出版包(https://www.nature.com/collections/fgihbeccbd,2024 年 5 月 5 日访问)。这项单细胞转录组、表观基因组和空间转录组综合工作将小鼠脑中存在的不同神经元细胞类型的数量更新为惊人的总数,略多于 5300 种,揭示了它们的分子多样性与它们的相对位置一致。我们在此提出的问题是:我们能否解释如此多不同类型的细胞是如何产生和定位的?这个问题与另一个问题相关:我们是否有形态模型允许在相对位置和神经元类型规范方面将这种程度的多样性相关联?令人惊讶的是,答案是可能的,而且几乎是肯定的。 BICCN 出版物隐含地使用了 Herrick 的传统柱状脑模型([ 1 ];图 1 a-d),可能是 Swanson 的修改版([ 2 , 3 ];图 1 e),或 Dong [ 4 ] 在 Allen 研究所的成年小鼠大脑图谱 [mouse.brain-map.org] 中使用的模型。该模型将端脑、间脑、中脑、后脑和脊髓视为主要分区(五个喙尾小泡;图 1 a)。在该模型中,Herrick 的最小单位由四个功能实体表示(脑干和脊髓中定义的躯体运动、内脏运动、内脏感觉和躯体感觉柱:Sm、Vm、Vs、Ss;图 1 a、d)。本文作者将它们外推到前脑(即间脑的 Eth、Dth、Vth、Hth;端脑的 Hi、Pir、Str、Se;图 1 a-c 中统一颜色的代码)。请注意,前脑柱可能执行与后脑不同的功能,尽管间脑在功能上被解释为脑干的延续。总的来说,这就构成了 5 个囊泡 × 4 个柱 = 20 个柱状单元,它们应该产生最近发现的 5300 种神经元类型(平均每柱 265 种细胞类型)。