摘要 — 目的:近年来,黎曼几何在脑机接口 (BCI) 中的应用势头强劲。为黎曼 BCI 提出的大多数机器学习技术都认为流形上的数据分布是单峰的。然而,由于高数据变异性是脑电图 (EEG) 的一个关键限制,因此分布可能是多峰的而不是单峰的。在本文中,我们提出了一种新颖的数据建模方法,用于考虑 EEG 协方差矩阵的黎曼流形上的复杂数据分布,旨在提高 BCI 的可靠性。方法:我们的方法黎曼谱聚类 (RiSC) 使用基于测地距离的相似性测量的图来表示流形上的 EEG 协方差矩阵分布,然后通过谱聚类对图节点进行聚类。这允许灵活地在流形上对单峰和多峰分布进行建模。可以以 RiSC 为基础设计异常值检测器(即异常值检测黎曼谱聚类 (oden-RiSC))和多模态分类器(即多模态分类器黎曼谱聚类 (mcRiSC))。odenRiSC/mcRiSC 的所有必需参数均以数据驱动的方式选择。此外,无需预设异常值检测阈值和多模态分类模式数。结果:实验评估表明,odenRiSC 可以比现有方法更准确地检测 EEG 异常值,并且 mcRiSC 的表现优于标准单模态分类器,尤其是在高变异性数据集上。结论:odenRiSC/mcRiSC 有望使实验室外的真实 BCI 和神经人体工程学应用更加稳健。意义:RiSC 可以用作稳健的 EEG 异常值检测器和多模态分类器。
摘要 - 目的:riemannian几何形状用于脑部计算机界面(BCIS)已在纪念百年中获得了动力。针对Riemannian BCIS提出的大多数机器学习技术都会考虑一个人的数据分布是单峰的。但是,由于高数据可变性是脑电图(EEG)的关键限制,因此该分布可能是多模式的,而不是单峰。在本文中,我们提出了一种新型的数据建模方法,用于考虑在EEG协方差矩阵的Riemannian歧管上考虑复杂的数据分布,旨在提高BCI可靠性。方法:我们的方法,riemannian光谱聚类(RISC),代表使用基于地质距离提出的模拟测量的图形上的eeg协方差矩阵分布,然后通过光谱群集将图形节点组成。这允许在歧管上建模单峰和多模式分布。RISC可以用作设计名为Outier检测的离群检测器Riemannian光谱聚类(ODEN-RISC)和名为多模式的多模式分类器Riemannian Spectral spectral clustering(MCRISC)的基础。以数据驱动方式选择Odenrisc/Mcrisc的所有必需参数。越过,无需预先设置离群检测的阈值和多模式分类的模式的数量。结果:实验评估表明,与现有方法相比,Odenrisc可以更准确地检测EEG异常值,而Mcrisc进行了标准的单峰分类器,尤其是在高变异性数据集上。结论:预计Odenrisc/Mcrisc将有助于使现实生活中的BCI在实验室外和神经学应用程序外应用更强大。明显:RISC可以用作强大的EEG Outier检测器和多模式分类器。
摘要 - 生成扩散模型(GDMS),在对各种域的复杂数据分布进行建模方面取得了显着的进步。与此同时,深度加固学习(DRL)在优化Wi-Fi网络性能方面已显示出重大改进。Wi-Fi优化问题对于数学上的模型来说是高度挑战性的,DRL方法可以绕过复杂的数学建模,而GDMS在处理复杂的数据建模方面表现出色。因此,将DRL与GDM相结合可以相互增强其功能。Wi-Fi网络中当前的MAC层访问机制是分布式协调函数(DCF),它在大量端子中大大降低了性能。在这项研究中,我们提出了深层扩散确定性策略梯度(D3PG)算法,该算法将扩散模型与深层确定性策略梯度(DDPG)框架集成在一起,以优化Wi-Fi网络性能。据我们所知,这是在Wi-Fi性能优化中应用这种集成的第一项工作。我们提出了一种基于D3PG算法的共同调整争议窗口和聚合框架长度的访问机制。通过模拟,我们证明了这种机制在密集的Wi-Fi方案中显着优于现有的Wi-Fi标准,即使用户数量急剧增加,也保持了性能。
云计算以快速的速度蓬勃发展。与数据安全性相关的重大后果似乎是恶意用户可能会获得未经授权的敏感数据,而这些数据可能会进一步滥用。这引起了一个惊人的情况,以解决与数据安全性有关的关键问题并提出恶意用户的预测。本文提出了一个供养的学习驱动的,以供云环境中的安全数据分布(FEDMUP)中的安全性数据分配。这种方法首先分析用户行为以获取多个安全风险参数。之后,它采用了联合学习驱动的恶意用户预测方法来主动揭示可疑用户。fedMup在其本地数据集上训练本地模型并传输计算值,而不是实际的原始数据,以获取基于平均各种本地版本的更新的全局模型。此更新的模型会与用户重复共享,以便获得更好,更有效的模型,能够更精确地预测恶意用户。广泛的实验工作和提议模型与最新方法的比较证明了拟议工作的效率。在关键绩效指标中观察到显着改善,例如恶意用户的预测准确性,精度,召回和F1得分高达14.32%,17.88%,14.32%和18.35%。
在零射门学习(ZSL)领域,我们在广义零局学习(GZSL)模型中介绍了偏爱数据的模型。为了解决这个问题,我们引入了一个名为D 3 GZSL的端到端生成GZSL框架。对于更平衡的模型,该框架尊重所见和合成的未见数据分别为分布和分布数据。d 3 GZSL包括两个核心模块:分配双空间蒸馏(ID 2 SD)和分布外批处理蒸馏(O 2 DBD)。ID 2 SD在嵌入和标签空间中的教师学生成果对齐,从而增强了学习连贯性。o 2 dbd在每个批次样本中引入了低维度的低分布表示形式,从而捕获了可见类别和未看到类别之间的共享结构。我们的方法证明了其在既定的GZSL基准测试中的有效性,无缝地集成到主流生成框架中。广泛的例子始终展示D 3 GZSL提高了现有生成GZSL方法的性能,从而低估了其重新零摄入学习实践的潜力。该代码可在以下方面获得:https://github.com/pjbq/pjbq/d3gzsl.git.git
统计分析是医学研究的组成部分。它有助于将原始数据转换为有意义的见解,支持假设检验,优化研究设计,评估风险和预后,并促进基于证据的决策。统计分析增加了研究发现的可靠性,有效性和普遍性,最终提高了医学知识并改善了患者护理。没有它,对收集的数据的含义分析是不可能的。得出的结论将是没有根据的和误导的。许多卫生专业人员不熟悉统计分析及其基本概念。临床数据的分析是医学研究的组成部分。识别数据类型(连续,准连续或离散)并检测异常值是第一个也是最重要的步骤。在分析数据分布时,建议使用图形和数值方法。取决于数据分配的类型,可以使用适当的非参数或参数测试进行进一步分析。可以使用各种数学方法(例如平方根或对数)进行标准化的数据,并在下一步中使用参数测试进行分析。本综述提供了对这些概念的基本解释,而无需使用复杂的数学或统计方程,但有几个图形示例的各种统计术语。
目的:监督机器学习(ML)为定量MRI中的参数映射提供了一种令人信服的替代方法。这项工作的目的是证明和量化不同训练数据分布对超级访问的ML用于拟合时的准确性和精度的影响。方法:我们使用传统的模型拟合和监督ML拟合了两个和三校区的生物物理模型以及模拟的扩散数据的扩散测量。对于监督的ML,我们培训了几个人工神经网络以及随机的森林回归器,以不同的地面真相参数分布。我们比较了使用合成测试数据从不同估计中获得的参数估计值的准确性和精度。结果:当训练集中参数组合的分布与在健康人类数据集中观察到的参数组合匹配时,我们观察到高精度,但对非典型参数组合的估计值不准确。相反,当从整个合理参数空间中统一采样训练数据时,对于非典型参数组合,估计值往往更准确,但对于典型的参数组合可能具有较低的精度。结论:这项工作强调,使用监督ML对模型参数的估计在很大程度上取决于训练集分布。我们表明,使用ML获得的高精度可能会掩盖强偏置,并且参数图的视觉评估不足以评估估计值的质量。