摘要 — 用于通信服务的卫星星座正变得越来越重要,Starlink 和 OneWeb 等多家公司都发射了由数百或数千颗卫星组成的星座。本论文研究了如何为直径约为 15 厘米的小型用户终端设计这样的星座。提出了四个星座,其中两个在 8500 公里高度,两个在 1200 公里高度。研究了在轨道平面上系统地放置卫星的方法、链路预算的方面以及国际上的相关法规。结果发现,最有利的星座是中地球轨道星座,最低仰角为 30 ◦。选择这种星座的主要原因是预算有限,无法发射大量卫星。最后,考虑了同时包含地球静止卫星和非地球静止卫星的混合星座的概念。
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2023 有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2023 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2023 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2023 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 32 14 2023 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 44 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 45 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 46 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 47 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 48 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 49 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 50 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 51 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 52 20 2023 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . .53 21 GEO 数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... 56
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2023 有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2023 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2023 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2023 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 32 14 2023 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 44 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 45 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 46 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 47 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 48 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 49 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 50 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 51 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 52 20 2023 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . .53 21 GEO 数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... 56
空军依靠配备移动目标指示 (MTI) 雷达的宽体飞机(E-3 哨兵 (AWACS)、E-8C 联合 STARS)来支持空中和地面目标的动态瞄准和交战。这些飞机正在老化,并且越来越被认为无法在高端对手可能创造的高度竞争环境 (HCE) 中生存。因此,人们对新空中(例如 E-7)和太空系统的兴趣日益浓厚,作为在这些环境中支持作战的替代手段。太空雷达和电光传感器可以生成静止目标的图像。然而,从低地球轨道 (LEO) 跟踪移动目标需要近乎连续的目标覆盖,因此需要高度扩散的星座(数百颗卫星)。此外,能够检测缓慢移动目标的太空雷达 (SBR) 必须具有长天线,这往往会使卫星成本高昂。出于这些原因,过去开发 MTI SBR 的努力并未导致部署作战系统。然而,当前的商业努力正在降低日益增多的低地球轨道卫星星座的成本,这些星座由数千颗拟议中的卫星和数百颗已经发射的卫星组成。此外,在单个卫星层面和整个系统层面,替代传感方法和创新概念可能有助于降低卫星成本。鉴于这些发展和迫切的需求,空军部将受益于对开发和部署结合飞机和卫星的系统的可行性的独立评估,以便在 HCE 中提供对移动目标的监视和瞄准。
1 月 8 日星期一,Starlink 团队通过我们六天前发射的一颗新的 Direct to Cell 卫星,使用 T-Mobile 网络频谱成功发送和接收了第一条短信。将手机连接到卫星有几个主要挑战需要克服。例如,在地面网络中,手机信号塔是静止的,但在卫星网络中,它们相对于地球上的用户以每小时数万英里的速度移动。这要求卫星和住宿设施之间进行无缝切换,以应对多普勒频移和时间延迟等因素,这些因素对手机与空间通信构成挑战。由于手机的天线增益和发射功率较低,手机也很难连接到数百公里外的卫星。搭载 Direct to Cell 有效载荷的 Starlink 卫星配备了创新的新型定制硅片、相控阵天线和先进的软件算法,可以克服这些挑战并为地面上的手机提供标准 LTE 服务。作为火箭和卫星发射和制造领域的全球领导者,SpaceX 具有独特的优势,可以快速扩展我们的 Direct to Cell 网络,并将快速发射数百颗卫星组成的星座,以在 2024 年提供文本服务,并在 2025 年提供语音、数据和物联网 (IoT) 服务。
摘要。对 74 颗恒星进行了圆形光谱偏振观测,试图通过其光谱线中的纵向塞曼效应探测磁场。观测样本包括 22 颗正常 B、A 和 F 星、4 颗发射线 B 和 A 星、25 颗 Am 星、10 颗 HgMn 星、2 颗 λ Boo 星和 11 颗磁性 Ap 星。使用最小二乘反卷积多线分析方法(Donati 等人,1997 年),从每个光谱中提取了高精度斯托克斯 I 和 V 平均特征。我们完全没有发现正常、Am 和 HgMn 星中存在磁场的证据,纵向场测量的上限通常比以前为这些物体获得的任何值小得多。我们得出结论,如果这些恒星的光球层中存在任何磁场,这些磁场的排列顺序与磁性 Ap 恒星不同,也不类似于活跃的晚期恒星的磁场。我们还首次在 A2pSr 恒星 HD 108945 中检测到磁场,并对五颗先前已知的磁性 Ap 恒星的纵向磁场进行了新的精确测量,但没有在其他五颗被归类为 Ap SrCrEu 的恒星中检测到磁场。我们还报告了几个双星系统的新结果,包括 Am-δDel SB2 HD 110951 快速旋转次星的新 v sin i。
社会对太空资产的依赖已经增长到如今每个现代国家基础设施的一部分的程度。借助太空技术提供的服务(例如全球导航卫星系统)对于从电信到交通再到银行等各个领域的顺利运营至关重要(Hesse and Hornung,2015),而且这个清单还可以继续。甚至普通民众也已经习惯使用卫星服务,例如卫星电视或手机上的卫星导航。因此,对我们的太空资产的任何威胁对社会来说都是非常重要的问题。截至 2020 年 2 月,太空中大约有 5,500 颗卫星,但实际上只有大约 2,300 颗在运行,这意味着大约有 3,200 颗报废卫星仍在地球轨道上运行,还有火箭的上面级和整流罩以及因解体、爆炸、碰撞、退化或其他异常事件而产生的各种较小物体,这些事件导致碎片的产生。这些物体统称为空间垃圾,其尺寸分布范围从大型完整物体(例如,尺寸大于 10 米且重量为几吨的火箭或大型卫星的部件)到毫米大小的碎片,如油漆鳞片或冷却剂凝固液滴。2020 年初的估计显示,有 34,000 个物体大于 10 厘米,900,000 个物体介于 > 1 至 10 厘米之间,以及惊人的 1.28 亿个物体介于 > 1 毫米至 1 厘米之间。鉴于其高速度和随之而来的高动能,即使是小碎片也会对正在运行的卫星构成重大威胁,因为它们可能会撞击卫星,造成灾难性的后果并导致潜在的关键服务丧失。同时,较大物体之间的高能碰撞会产生真正的爆炸,从而产生数千个碎片。这些碎片反过来会与其他轨道物体相撞,引发连锁反应和滚雪球效应,可能导致整个轨道无法使用。这种极端情况(凯斯勒综合征)最初由凯斯勒在 70 年代研究(凯斯勒和库尔帕莱,1978 年),距离现实并不遥远,因为已经发生了几次碰撞。也许最著名的是俄罗斯军用通信卫星 Cosmos 2,251 与铱星星座卫星之间的碰撞(王,2010 年),这导致碎片数量大幅增加。随着目前正在开发的卫星应用越来越多,需要越来越多的卫星(例如,部署数百颗卫星组成的星座以提供全球连接或万维网),空间垃圾问题变得越来越重要(Virgili 等人,2016 年)。
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2024 个有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2024 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2024 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2024 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 31 14 2024 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 45 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 46 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 47 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 48 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 49 20 颗 2024 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . . 50 21 GEO 卫星数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2024 个有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2024 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2024 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2024 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 31 14 2024 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 45 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 46 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 47 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 48 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 49 20 颗 2024 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . . 50 21 GEO 卫星数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
当作者偶然发现有关伽耶特黎真言的文献时,他/她发现,40 天内吟诵 125,000 次伽耶特黎真言并在内心聆听吟诵的声音被认为是一种特殊的修行,可以从吟诵伽耶特黎真言中获得巨大的益处。作者满怀希望,建议她的母亲也进行吟诵,她的母亲在 40 天内确实做到了,每天花大约 4 个小时,念诵 32 颗 Tulsi mala(一串 Tulsi 珠子),每颗 Tulsi mala 有 108 颗珠子,但为了计数目的,只取 108 颗中的 100 颗,以留出 8 颗用于发音错误。尽管作者的母亲在 40 天内完成了 125,000 次伽耶特黎真言的吟诵,练习了大约 160 个小时,但作者的母亲的记忆力却没有得到任何提高,这让她非常震惊。