摘要。从患白斑综合症的病虾斑节对虾中纯化出病原病毒。负染制剂显示病毒是多形性的。它呈梭形或杆状。在负染制剂中,病毒体最宽处为 70 至 150 纳米,长 250 至 380 纳米。在某些病毒体中,尾状突起从一端延伸。衣壳显然是由堆叠的亚基环组成。这些环与衣壳的纵轴垂直排列。病毒基因组是双链 DNA 分子,可产生至少 22 个 Hind 111 片段。DNA 的全长估计长于 150 kbp。根据病毒的形态特征和基因组结构,我们确认白斑综合征相关病毒(MJSSV)属于杆状病毒科(Baculoviridae)裸杆状病毒亚科(Nudibaculovirinae)NOB属(非封闭型杆状病毒),并将本分离株命名为PmNOBIII,并建议使用WSBV(与白斑综合征相关的杆状病毒)来指示PmNOBIII相关病原体。
摘要。在澳大利亚昆士兰州北部爆发的中期死亡综合症期间,对 24 只濒死对虾进行了调查,首次从中培养出 14 株支原体分离株。从对虾的鳃附属物、大脑和眼睛中分离出支原体。支原体在含有 0.5 至 3.0% 氯化钠和 20% 胎牛血清的改良 Frey 培养基中,在有或没有 CO2 的情况下在 20 至 37°C 之间生长。在 37°C 和 5% CO2 下观察到最佳生长。所有菌株都经过大小过滤和克隆,并将它们的形态、生化和生物分子特征与以前描述的支原体种的特征进行了比较。结果表明,这些菌株属于 2 个新种,为其指定了临时名称支原体 P1 (MPI) 和支原体 P2 (MP2)。两种支原体都能发酵大多数测试的碳水化合物,但不能水解精氨酸和尿素。MP1 产生薄膜和斑点,具有高磷酸酶活性,但 MP2 不会产生薄膜或斑点,也没有磷酸酶活性。两种物种都能裂解绵羊红细胞。从 MP1 DNA 中制备基因组文库(Mbol 消化)并克隆到 pUC19 中。使用从纯化的 MPI 制备的探针进行菌落杂交,以识别感兴趣的菌落。通过用 EcoRI 和 HindIII 消化从重组质粒中回收 MP1 DNA 片段。该 DNA 用于制备随机引物探针,用于与来自 MP1、MP2、M. bovis、M. dispar、M. agalactiae、M. bovjyenitalium、M. ovipneumonjae、支原体组 7、M. aryinini 和属于不同属的细菌的固定 DNA 进行点印迹杂交分析。该探针仅与来自 MP1 的基因组 DNA 发生反应。为了进一步提高灵敏度,设计了一种 MP1 特异性聚合酶链反应 (PCR) 检测方法,并产生了 254 bp 扩增子,可将 MP1 与所有其他测试的支原体 DNA 区分开来。使用 DNA 探针和 PCR 检测方法,从患病虾中分离出的大多数支原体可指定为菌株 MP1 (11/14,-80%)。
斑马鱼@巴斯 您是否和我们一样对斑马鱼研究充满热情?您想在联合国教科文组织世界遗产城市生活和工作吗? https://whc.unesco.org/en/list/428/ 那就来巴斯大学吧,巴斯大学是一所全球排名前 150 的大学(QS 2025) https://www.topuniversities.com/qs-top-uni-wur 我们的研究人员 Philip Ingham 教授 FRS Philip 在英国率先使用斑马鱼作为模型生物,早在 1980 年代就在牛津大学建立了第一个斑马鱼研究实验室。从那时起,他在 CRUK 伦敦研究所、谢菲尔德大学和埃克塞特大学以及新加坡李光前医学院建立了设施。他曾担任国际斑马鱼学会主席和斑马鱼疾病模型学会副主席,在 Hedgehog 信号通路和斑马鱼骨骼肌发育方面做出了重要发现。他于 2005 年荣获遗传学会奖章,并于 2014 年荣获 BSDB 沃丁顿奖章。罗伯特·凯尔什教授罗伯特在剑桥大学学习进化发育生物学,后与图宾根马克斯物理研究所的 Christiane Nüsslein-Volhard 和俄勒冈大学的 Judith Eisen 一起从事斑马鱼博士后研究。他的研究重点是神经嵴细胞的发育,特别是命运决定。他采用了从 CRSPR-Cas9 介导的基因组编辑到数学建模等一系列方法来剖析转录因子及其相关基因调控网络在选择和平衡命运决定中的作用。去年,他的研究成果获得了国际色素细胞学会联合会 (IFPCS) 的 2023 年迈伦·戈登奖巴斯全球讲席教授 Steven Farber Steve 是约翰霍普金斯大学脂质代谢和功能领域的世界知名专家,他因客座教授的身份定期来巴斯访问。获得电气工程学位后,Steve 在麻省理工学院学习神经生物学,探索胆碱能脑区神经递质和膜磷脂合成之间的平衡。在卡内基研究所 Marnie Halpern 实验室从事博士后研究期间,他率先使用斑马鱼进行脂质生物学研究。他研究的一个主要主题是开发工具,以研究完整组织和器官中脂质的细胞生物学,而这种方式以前只能在培养细胞或酵母中实现。副教授 Vasanta Subramanian 以研究哺乳动物发育而闻名,她从哥廷根 MPI Peter Gruss 实验室的研究员开始研究哺乳动物发育,Vasanta 拥有更多
双壳类软体动物分布于全球海洋和淡水栖息地。虽然它们的体型相对统一,其特征是同名的双壳类外壳,软体动物就栖息于此,但许多谱系都获得了独特的形态、生理和分子创新,这解释了它们对水生环境的各种特性(如盐度、流动条件或基质成分)的高度适应性。这使它们成为研究导致其多样性的进化轨迹的理想候选对象,也使它们成为研究气候变化引起的水生栖息地变暖和酸化的重要参与者。一些物种,如蓝贻贝和地中海贻贝以及斑马贻贝和斑驴贻贝,会形成可生物降解的纤维,即足丝。这些纤维具有巨大的仿生方法潜力,有助于开发可持续纺织品和其他基于纤维的织物。尽管双壳类动物具有广泛的科学意义,但其研究仍然严重不足,只有不到少数物种拥有关键资源,例如高质量基因组和发育转录组以及开展最先进分子和形态学研究的既定实验室协议。本文,我们报告了在这方面研究最深入的双壳类动物之一,即入侵淡水物种斑马贻贝 (Dreissena rostriformis)。我们总结了当前的知识状态和可用资源,这些资源使斑马贻贝非常适合研究低渗环境中生命的适应机制、生物矿化、仿生学和进化发育生物学。我们认为,斑马贻贝独特的生物学特性组合以及对基础和应用科学以及生物监测和保护生物学措施的广泛意义要求我们以 Dreissena rostriformis 为模型加强研究。
饲喂试验后对斑节对虾幼虾进行的氨基酸分析表明,饲喂 50% FRB 替代 SBM 的虾的赖氨酸水平明显高于对照组。赖氨酸和各种其他氨基酸对虾的味道至关重要。这些氨基酸的增加将进一步增强理想的味道,而下降则会导致虾的感官特性发生变化。此外,饲喂 50% FRB 的斑节对虾的谷氨酸(https://doi.org/10.1081/FRI-100000515)——一种负责海鲜产品鲜味的物质——高于对照组。这些结果表明,FRB 可以改善斑节对虾的感官特性,对虾味道至关重要的氨基酸数量增加就是明证。
摘要整合素介导的细胞附着迅速诱导酪氨酸激酶信号传导。尽管经过多年的研究,这种信号在整合素激活和粘着斑组装中的作用仍不清楚。我们提供的证据表明,Src 家族激酶 (SFK) 底物 Cas(Crk 相关底物、p130Cas、BCAR1)被磷酸化并与其 Crk/CrkL 效应物结合,这些效应物是粘着斑的前体。初始磷酸化 Cas 簇包含处于非活性弯曲闭合构象的整合素 β 1。后来,随着整合素 β 1 被激活,并募集核心粘着斑蛋白(包括黏着斑蛋白、踝蛋白、kindlin 和 paxillin),磷酸化 Cas 和总 Cas 水平降低。Cas 是上皮细胞和成纤维细胞在胶原蛋白和纤连蛋白上的细胞扩散和粘着斑组装所必需的。 Cas 簇的形成需要 Cas、Crk/CrkL、SFK 和 Rac1,但不需要黏着斑蛋白。Rac1 通过活性氧向 Cas 提供正反馈,而泛素蛋白酶体系统则提供负反馈。结果提示,粘着斑组装存在两步模型,其中磷酸化 Cas、效应子和失活整合素 β 1 簇通过正反馈生长,然后是整合素激活和核心粘着斑蛋白募集。
透皮药物输送系统(TDDS)是一种广泛接受的药物输送方法,由于各种优势和通过完整皮肤全身递送药物的新型途径之一。局部药物给药是一种通过皮肤输送药物的系统性和局部化方法,被认为是口服和肠胃外途径的有吸引力的替代方法。目前的研究的目的是通过溶剂蒸发技术制备卡马西平的基质类型透皮药物输送系统(TDDS)。使用HPMC E-15,Eudragit RL-100和乙基纤维素不同比率的组合制备了几批。丙二醇被用作增塑剂,DMSO被掺入渗透剂增强剂。这些配制的经皮斑块的特征是其物理化学参数,例如厚度,重量变化,折叠耐力,水分吸收百分比,水分吸收百分比和体外药物释放研究。在上面的所有配方中,选择了最佳配方,因为这种优化的配方显示出令人满意的药物含量,其厚度,重量均匀性,水分含量百分比,水分摄入百分比和药物释放的最高百分比,即12小时内的93.95%。优化的配方(F6)显示出最大的药物释放百分比。