用于农业和生物医学应用的基因编辑猪通常使用体细胞核移植 (SCNT) 生成。然而,SCNT 需要使用单克隆细胞作为供体,而耗时费力的单克隆选择过程限制了大批基因编辑动物的生产。在这里,我们开发了一种快速有效的方法,称为 RE-DSRNP(报告 RNA 富集双 sgRNA/CRISPR-Cas9 核糖核蛋白),用于生成基因编辑供体细胞。 RE-DSRNP利用双sgRNA精准高效的编辑特点和报告RNA富集的RNP(CRISPR-Cas9核糖核蛋白)高编辑效率、低脱靶、无转基因、低细胞毒性的特点,无需筛选单克隆细胞,将供体细胞的生成时间从3-4周大大缩短至1周,同时也降低了供体细胞凋亡和染色体非整倍体的程度。我们应用RE-DSRNP技术生产了带有野生型p53诱导的磷酸酶1(WIP1)基因缺失编辑的克隆猪:在32头断奶克隆猪中,31头(97%)携带WIP1编辑,15头(47%)为设计片段缺失纯合,未检测到脱靶事件。 WIP1 基因敲除 (KO) 猪表现出雄性生殖障碍,这说明 RE-DSRNP 可用于快速生成精确编辑的动物,用于功能基因组学和疾病研究。RE-DSRNP 在大型动物中的强大编辑性能以及其显著缩短的 SCNT 供体细胞生成所需时间,为其在快速生成无转基因克隆动物种群中的应用前景提供了支持。
版本1 - 评论审稿人Datta,Rashmi Delhi Cantt,《麻醉与重症监护室审查》返回02-NOV-2021一般性评论该提案已被仔细研究。很少有评论嵌入到返回的纸中。但是,本文的范围尚不清楚:作者是否关注各种研究的步骤,以确保实施针对各种疾病条件开发的不同微调CDSS技术?作者是否建议使用这些方法来建议在重症监护患者中进行机械通气断奶的探险?如果是这样,以下内容是无关紧要的: - 轻推技术的细节 - AI技术的开发过程 - 选择特定算法时使用的特定算法时,当符合Nudge技术的参数时,最后一部分将具有一定的意义。- 目前形式的研究变成了人类行为变化 - 随着算法的可用性而发生的变化的发生率。- 可以添加去除技术后的变化持续时间,以进一步说明对Nudge /任何其他基于AI的算法的需求 - 可用的文献将重点关注高级顾问及其对新技术和算法的可接受性。高级术语通常会抵抗变革,无论是技术还是特定算法,可能不是根据其实践/经验。这可以被视为审查员Baysari,Melissa悉尼大学医学与健康评论学院审查返回2022年1月24日返回的一般评论,感谢您有机会审查该协议论文。尽管是局部区域,但我发现本文很难阅读和理解。作者似乎还将CDS和轻推技术视为同一件事,而当他们不在时。
gaucher病是最普遍的溶酶体储存疾病,是由GBA基因的纯合突变引起的,GBA基因负责编码酶葡萄糖脑培合酶。神经性高刺病与小胶质细胞增多症,星形胶质细胞增多和神经退行性有关。然而,小胶质细胞,星形胶质细胞和神经元在疾病中起着作用仍有待确定。在当前的研究中,我们开发了可诱导的,细胞型特异性的GBA -KO小鼠,以更好地了解GBA缺乏对小胶质细胞和神经元的影响。gba有条件地将仅在小胶质细胞或神经元或整个体内淘汰。这些小鼠模型是使用他莫昔芬诱导的CRE系统开发的,他莫昔芬给药开始于断奶时。小胶质细胞特异性GBA -KO小鼠没有疾病的迹象。然而,神经元特异性的GBA KO导致寿命缩短,体重减轻和共济失调。这些小鼠还具有明显的神经变性,小胶质细胞增多症和星形胶质细胞增多症,伴随着葡萄糖基酰胺和葡萄糖基肾上腺素的积累,概括了类似Gaucher病的症状。这些令人惊讶的发现表明,与神经元特异性的GBA缺乏不同,仅小胶质细胞特异性GBA缺乏并不能诱发疾病。中位生存率为16周的神经元乔ch病小鼠模型可能可用于将来的发病机理研究和疗法评估。
商业安格斯小牛。每年带有黑秃母牛的未产母牛数量减少,母牛贬值减少,上市的小牛数量增加。同时,直接杂种优势增加了每头上市小牛的断奶和一岁重。”马丁内斯为 AHA 进行了分析,利用了之前的 AHA 研究,该研究记录了赫里福德公牛与安格斯公牛在安格斯牛群中使用时的表现。特别地,他研究了 30 头母牛群和 500 头母牛群的影响。马丁内斯使用了密苏里大学食品和农业政策研究所 (FAPRI) 的 10 年价格预测。估计的种植面积和管理决策基于美国农业部的《美国结构、管理实践和生产成本》。肉牛-小牛农场(2023 年)。年度预算是根据州母牛-小牛预算制定的。“使用美国农业部的出版物,我们可以获得与运营相关的土地数量、与之相关的固定成本、饲料成本以及生产商平均拥有的任何现金储备,然后我们使用 FAPRI 价格进行预测,”马丁内斯解释说。广义上讲,对于每个规模的赫里福德和安格斯小牛群,该模型使用随机的性能数据、成本数据、费用和收入池。每个模型代表 10 年中每年的 500 次模拟。接下来,马丁内斯评估了赫里福德和安格斯模型在年度农场净收入和净资产方面的差异。“现金为王。生产商总是向我们询问农场净收入。这决定了他们的纳税义务和
重要马匹健康信息:马疱疹病毒 1 (EHV1) 是一种具有重要经济价值的马匹病原体,其主要作用是诱发怀孕母马的流产风暴或零星流产、马驹的早期新生儿死亡以及幼马的呼吸道疾病。马疱疹病毒性呼吸道疾病通常由 EHV-4 引起,最常见于断奶的小马驹和一岁马驹,通常发生在秋冬季。老马比小马更容易传播病毒而没有表现出感染迹象。马 α 疱疹病毒 4,以前称为马疱疹病毒 4 (EHV-4) 是疱疹病毒科的一种病毒,可引起马的鼻肺炎。它是导致小马驹呼吸道感染的最重要病毒病因。与其他疱疹病毒一样,EHV-4 会导致受感染动物终生潜伏感染。治疗方法可能包括抗炎药物,有些马可能需要静脉输液。如果发生继发性细菌感染,可使用抗生素治疗;但是,抗生素对马疱疹病毒本身无效。马流感是由马特有的几种甲型流感病毒引起的。病毒通过受感染的咳嗽马以及受污染的水桶、刷子、马具和其他马厩设备传播。预防:疫苗可用于预防呼吸道和流产形式的 EHV 和流感,一般来说,未接种疫苗的母马所生的马驹应在 3-4 个月大时接种第一剂疫苗,接种疫苗的母马所生的马驹应在大约 6 个月大时接种第一剂疫苗。请咨询您的兽医以制定疫苗接种计划
摘要:肠道微生物及其代谢产物积极参与宿主免疫的发展和调节,这可能会影响疾病易感性。在此,我们回顾了肠道微生物群 - 免疫轴的最新研究进步。我们详细讨论了肠道微生物群是如何成为新生儿免疫发育的转化点,如新发现的典型,例如在子宫肠道代谢组和断奶反应中,例如母体印记,例如母体印记。我们描述了肠道菌群如何塑造先天性和适应性免疫,重点是代谢物短链脂肪酸和二胆酸。我们还全面描述了微生物群 - 免疫轴的破坏如何导致免疫介导的疾病,例如胃肠道感染,炎症性肠道疾病,心脏内代谢性疾病,心血管疾病,糖尿病,糖尿病,糖尿病和高度疾病,自动育种,自动繁殖(例如心脏血管疾病)高敏性(例如哮喘和过敏),心理疾病(例如焦虑症)和癌症(例如结肠直肠和肝癌)。我们进一步涵盖了粪便微生物群移植,益生菌,益生元和饮食多酚在重塑肠道菌群及其治疗潜力中的作用。继续,我们研究了肠道菌群如何调节免疫疗法,包括免疫检查点抑制剂,JAK抑制剂和抗TNF疗法。我们最后提到了宏基因组学,无菌模型和微生物群的当前挑战,以对肠道微生物群如何调节免疫力有基本的了解。总的来说,这篇综述提出了从微生物组靶向干预措施的角度改善免疫疗法的效率。
文章历史:24-565 收稿日期:2024 年 7 月 14 日 修订日期:2024 年 8 月 18 日 接受日期:2024 年 8 月 31 日 在线优先:2024 年 11 月 11 日 摘要 由产气荚膜梭菌引起的肠毒血症是兔子的一种重要疾病。产气荚膜梭菌 A 型可引起严重腹泻、腹胀和高死亡率,尤其是在断奶兔子中。本研究通过制备两种具有不同佐剂(Montanide gel 01 TM 和氢氧化铝凝胶)的单价疫苗来研究保护兔子免受产气荚膜梭菌 A 型感染的灭活疫苗制剂的效力。对照组家兔皮下注射2mL磷酸盐缓冲液,另两组家兔每隔3周分2次皮下注射2mL制备好的单价疫苗,疫苗佐剂为两种不同佐剂(Montanide凝胶和氢氧化铝凝胶)。采用ELISA和血清中和试验测定免疫家兔11个月内的抗体滴度。氢氧化铝凝胶疫苗保护至6个月,保护率为80%,Montanide凝胶01 TM疫苗保护至10个月,保护率为90%。结论:Montanide凝胶佐剂疫苗比氢氧化铝凝胶疫苗具有更长的免疫持续时间。关键词:氢氧化铝凝胶,A型产气荚膜梭菌,Montanide凝胶,血清中和试验,ELISA
早期发育的特征是大脑成熟的动态转变,这可能会受到环境因素的影响。在这里,我们试图确定断奶后和青春期社会隔离对雄性大鼠奖励行为和多巴胺能信号的影响。受试者是社会孤立的,或者在产后第21天被安置。三周后,在喂养回合期间检查了内侧前额叶皮层(MPFC)和伏隔壳核的细胞外多巴胺浓度。令人惊讶的是,发现相反的作用,其中在所在的组中,但没有孤立的大鼠观察到MPFC多巴胺浓度的增加。在鲜明的对比中,在孤立的(但未容纳的组)大鼠的NAC中发现了多巴胺水平升高。此外,随后的组外壳无法逆转隔离大鼠的MPFC的影响,这表明对多巴胺信号动力学的长期影响显着。当提供高度可口的食物时,孤立的受试者在巧克力是新颖时会显示出MPFC多巴胺水平的急剧增加,但长期消耗慢性巧克力后没有影响。相比之下,该小组饲养的受试者仅在慢性巧克力消耗中显示出多巴胺水平的显着升高。多巴胺的变化与行为度量的差异相关。重要的是,通过将多巴胺或可卡因显微注射到MPFC中,可以逆转与奖励相关行为的不足。在一起,这些数据提供了证据表明,与大脑区域特异性的方式相比,社会隔离与青春期的社会隔离会改变奖励引起的多巴胺水平,这对与奖励相关的行为具有重要的功能性IM元素。
摘要:猪流感病毒 A (IAV-S) 是一种具有重要经济价值的猪病原体。IAV-S 血凝素 (HA) 表面蛋白是疫苗开发的主要靶标。在本研究中,我们评估了使用重组三节段皮钦德病毒 (rPICV) 作为病毒载体递送 HA 抗原以保护猪免受 IAV-S 攻击的可行性。研究包括四组断奶仔猪 (T01–T04)。T01 注射 PBS 作为未接种疫苗的对照。T02 接种表达绿色荧光蛋白的 rPICV (rPICV-GFP)。T03 接种表达 IAV-S H3N2 毒株 HA 抗原的 rPICV (rPICV-H3)。T04 接种相同 H3N2 毒株的重组 HA 蛋白抗原。猪在第 0 天和第 21 天接种两次疫苗,并于第 43 天通过气管内接种同源 H3N2 IAV-S 毒株进行攻击。接种后,T03 和 T04 组的所有猪均发生血清转化并表现出高滴度的血浆中和抗体。攻击后,在 T01 和 T02 组猪的鼻拭子和支气管肺泡灌洗液中检测到高水平的 IAV-S RNA,但在 T03 和 T04 组未检测到。同样,在 T01 和 T02 组中观察到肺病变,但在 T03 和 T04 组中未观察到。在 T03 和 T04 组之间在保护性方面没有显著差异。总之,我们的结果表明 rPICV-H3 载体疫苗可引发针对 IAV-S 攻击的保护性免疫。这项研究表明,rPICV 是一种很有前途的病毒载体,可用于开发抗 IAV-S 疫苗。
摘要:小隐孢子虫(C. parvum)是一种原生动物寄生虫,已知会导致断奶前犊牛的隐孢子虫病。免疫抑制的动物和患者有患上这种疾病的风险,这种疾病可能会导致致命的腹泻。本研究旨在基于小隐孢子虫感染者的差异表达基因(DEG)构建网络生物学框架。通过这种方式,小隐孢子虫感染个体的基因表达谱分析可以为我们提供感染条件下活跃表达的基因和转录本的快照。在本研究中,我们分析了微阵列数据集,并将患者的基因表达谱与健康对照的不同数据集进行了比较。使用网络医学方法来识别基因相互作用网络中最具影响力的基因,我们发现了与小隐孢子虫感染相关的必需基因和通路。我们鉴定了 164 个差异表达基因(109 个上调 DEG 和 54 个下调 DEG),并将它们分配到通路和基因集富集分析中。结果支持鉴定七个具有高中心度值的重要枢纽基因:ISG15、MX1、IFI44L、STAT1、IFIT1、OAS1、IFIT3、RSAD2、IFITM1 和 IFI44。这些基因与多种生物过程有关,不仅限于宿主相互作用、1 型干扰素产生或对 IL-gamma 的反应。此外,还发现四个基因(IFI44、IFIT3、IFITM1 和 MX1)参与先天免疫、炎症、细胞凋亡、磷酸化、细胞增殖和细胞信号传导。总之,这些结果加强了基于基因谱的工具的开发和实施,以便在早期识别和治疗隐孢子虫相关疾病。