摘要在本文中,我们介绍了统计学习问题的新方法Argminρ(θ)∈PθW2 Q(ρ(ρ(θ)))在量子L 2-量子l 2- w insetrim l 2- w inserric中。我们通过考虑使用维度二维C ∗代数的密度算子的Wasserstein天然梯度流来解决此估计问题。对于密度运算符的连续参数模型,我们拉回了量子瓦斯汀公制,以使参数空间与量子Wasserstein Information Matrix成为Riemannian歧管。使用Benamou -Brenier公式的量子类似物,我们在参数空间上得出了自然梯度流。我们还通过研究相关的Wigner概率分布的运输来讨论某些连续变量的量子状态。
2015 SDP 斯坦斯特德可持续发展计划(2015 年)——一份总体规划文件,为机场的可持续发展提供框架,包括一份介绍性摘要和四份详细计划(经济与地面通道、土地使用、环境和社区)。 25+ 申请 第 73 条申请(UDC 编号:UTT/0717/06/FUL)于 2006 年提交,并在上诉中获同意(PINS 编号:APP/C1570/A/06/2032287),以将乘客上限提高到 35mppa,飞机起降次数提高到 264,000 ATM 加 10,000 GA。该申请附有 ES。 35+ 申请 申请新机场基础设施的全面规划许可,同时将乘客上限提高到 43mppa,并限制单架飞机的起降次数。该申请附有此 ES。 AADT
各位飞行员,这似乎不太可能,但有些飞行员把埃格林空军基地 (VPS) 误认为德斯坦机场 (DTS)。两者是有区别的。埃格林有两条跑道(Rwy 02/20 和 Rwy 12/30)。德斯坦只有一条跑道(Rwy 14/32)。埃格林位于海湾北部,而德斯坦紧邻海滩和墨西哥湾。此外,德斯坦南端与高层公寓接壤。感谢您帮助传播消息,不要成为下一个飞行员。
LAeq 等效连续声级 – 名义稳定声音的级别,在给定位置和规定时间段内,其加权声能与波动噪声相同。16 小时 LAeq 是英国飞机噪声暴露指数,适用于 0700 至 2300(当地时间)的 16 小时时段以及平均夏日。在本卷中,LAeq 用于表示 16 小时 LAeq。
2型糖尿病(T2D)和肥胖症是影响全球数百万个人的普遍代谢性疾病。一种称为Tirzepatide治疗肥胖和T2D的新有效的治疗药物是GIP受体和GLP-1受体的双重激动剂。tirzepatide在临床上比GLP-1受体激动剂更有效,但原因尚未得到充分理解。tirzepatide比GLP-1受体更有效地刺激GIP受体。然而,尚未在E354(Wildtype)或Q354(E354Q)GIP受体变体上进行彻底研究Tirzepatide信号传导。E354Q变体与T2D和低体重指数的风险相关。为了更好地了解GIP受体信号传导,我们表征了两个GIP受体变体中内源性激动剂和Tirzepatide的活性。使用COS7细胞,我们检查了WildType和E354Q GIP受体信号传导,分析CAMP和IP 1的积累以及AKT,ERK1/2和CREB磷酸化。GIP(1-42)和GIP(1-30)NH 2在不包括CREB磷酸化的这些途径上显示出等值效应,其中GIP(1-30)NH 2在E354Q GIP受体上比GIP(1-42)更有效。tirzepatide在两个变体中都偏爱cAMP信号。这些发现表明Tirzepatide是一种偏向GαS信号的激动剂,并表明它同样激活了WildType和E354Q GIP受体变体。我们还观察到具有内源性肽的GIP受体变体的药理学之间的差异,这可能有助于解释表型的差异。这些发现有助于对GIP受体信号的全面理解,并将有助于开发打击T2D和肥胖症的疗法。
- 董事会决定基金会收入的分配。同样,基金会委员会决定了上述资金选择和/或任何资金扩展的例外(仅在有理的例外情况下才有可能)。- 如果批准了奖学金,则在批准通知书中指定的期限内,赞助人员有义务向基金会的董事会提交有关工作进度的书面报告;必须将德语和英语的摘要作为附录附加 - 有关赠款的一般信息(授予的赠款数量,资助项目的主题等)将在基金会的主页上发布;在受赠人的同意下,有关赞助人员的信息也是可能的。通过上述申请表制作相应的声明。- 基金会的资金没有法律权利;由于申请而产生的费用无法偿还。
日期:2024 年 1 月 12 日 姓名:MARÍA HELENA CASTÁN LANASPA 机构:大学教授 大学或中心:巴利亚多利德大学 知识分支:工程和建筑 知识领域:电子学 六年期限(RD 1086/89):5 研究活动、知识转移和交流:在她的整个科学生涯中,她的研究兴趣一直是电子设备和集成电路领域的结构和材料的电气特性。他在贝尔实验室(美国新泽西州默里山)从事博士后研究期间巩固了自己的专业领域。她是公认研究小组 (GIR) 电子设备和材料特性组 (GCME) (gcme.uva.es) 的创始人和协调员,自 2010 年成立以来直至 2018 年,她目前是上述 GIR 和卡斯蒂利亚和莱昂政府综合研究单位 (UIC) #051 的成员。他已完成 5 项为期六年的研究资助,其中最后一项于 2018 年获得认可。他在国家和国际联盟内开展研究工作,研究方向为高介电常数电介质和功能氧化物,用于电阻和多铁性存储器以及电子突触的开发。由于他的团队的研究工作主要集中在电气特性方面,他与其他团队保持着密切而持续的合作,以互补的视野共同获得全球视野;为此,它参与了协调研究项目,采用多学科方法解决所涉及的所有方面:制造技术、电气、物理和化学特性、物理建模和电路模拟。她作为成员或首席研究员参与了 20 个竞争性研究项目和 2 份研究合同。他在电子领域的国际期刊上发表了 163 篇论文(Google Scholar 数据),全部被 JCR 索引,并参加了该领域的 170 次参考科学会议,其中多次受邀参加(过去 5 年中有 3 次)。她是高影响力科学期刊的审稿人、科学协会的成员、博士论文委员会的参与者以及迄今为止 2 次国际会议的组织者。
Berry相[1]通过绝热循环过程后获得的相位揭示了量子波函数的几何信息,它的概念为理解许多材料的拓扑性质奠定了基础[2–13]。Berry相理论建立在纯量子态上,例如基态符合零温统计集合极限的描述,在有限温度下,密度矩阵通过将热分布与系统所有状态相关联来描述量子系统的热性质。因此,将Berry相推广到混合量子态领域是一项重要任务。已有多种方法解决这个问题[14–21],其中Uhlmann相最近引起了广泛关注,因为它已被证明在多种一维、二维和自旋j系统中在有限温度下表现出拓扑相变[22–26]。这些系统的一个关键特征是 Uhlmann 相在临界温度下的不连续跳跃,标志着当系统在参数空间中穿过一个循环时,底层的 Uhlmann 完整性会发生变化。然而,由于数学结构和物理解释的复杂性,文献中对 Uhlmann 相的了解远少于 Berry 相。此外,只有少数模型可以获得 Uhlmann 相的解析结果 [ 22 – 30 ] 。Berry 相是纯几何的,因为它不依赖于感兴趣量子系统时间演化过程中的任何动力学效应 [ 31 ] 。因此,Berry 相理论可以用纯数学的方式构建。概括地说,密度矩阵的 Uhlmann 相是从数学角度几乎平行构建的,并且与 Berry 相具有许多共同的几何性质。我们将首先使用纤维丛语言总结 Berry 相和 Uhlmann 相,以强调它们的几何特性。接下来,我们将给出玻色子和费米子相干态的 Uhlmann 相的解析表达式,并表明当温度趋近于零时,它们的值趋近于相应的 Berry 相。这两种相干态都可用于构造量子场的路径积分 [32 – 37]。虽然单个状态中允许有任意数量的玻色子,但是泡利不相容原理将单个状态的费米子数限制为零或一。因此,在玻色子相干态中使用复数,而在费米子相干态中使用格拉斯曼数。玻色子相干态也用于量子光学中,以描述来自经典源的辐射 [38 – 41]。此外,相干态的Berry相可以在文献[ 42 – 45 ]中找到,我们在附录A中总结了结果。我们对玻色子和费米子相干态的 Uhlmann 相的精确计算结果表明,它们确实携带几何信息,正如完整概念和与 Berry 相的类比所预期的那样。我们将证明,两种情况下的 Uhlmann 相都随温度平稳下降,没有有限温度跃迁,这与先前研究中一些具有有限温度跃迁的例子形成鲜明对比 [ 22 – 30 ] 。当温度降至零度时,玻色子和费米子相干态的 Uhlmann 相接近相应的 Berry 相。我们对相干态的结果以及之前的观察结果 [ 22 , 24 , 26 ] 表明,在零温度极限下,Uhlmann 相还原为相应的 Berry 相。
