摘要单连接和三个结构GAAS太阳能电池的二维热电模型分别利用Sentaurus-TCAD建立,以研究由HPMS引起的损害效应。模拟结果表明,GAAS太阳能电池有两种倦怠机制:高电场下的焦油热量造成的损害,以及由于雪崩造成的温度飙升而导致的失败。此外,拟合的经验公式还表明,在阴极前表面的反射点焦海积累引起的倦怠发生时,当注射频率高于3 GHz时,损伤能量随频率的增加而降低。相反,当频率低于3 GHz时,可以触发后表面场附近的反向偏置空间电荷区域的雪崩乘法效应,并且随着频率的上升而损坏能量上升。此外,由于散热耗散的增强和雪崩电离速率的下降,多开关的GAAS太阳能电池变得比在同一HPM干扰下的单连接太阳能电池更加困难。此外,重建了等效的模型(基于注射HPMS信号未达到倦怠阈值时的载流子迁移率分布),以研究由HPMS注入所致的GAAS太阳能电池性能的软损伤对GAAS太阳能电池的性能的影响。关键字:GAAS太阳能电池,多结,HPM,注射频率,软损伤分类:电子设备,电路和模块(硅,com-compound com-pound,有机和新型材料)
摘要我们报告了一种新型材料的超导性能:鼻红细胞膜。从X≈3.8探索了Re X Lu Binary的不同组成,以接近纯Re化学计量。根据电子色散光谱结果,获得了x≈10.5的最高临界温度,最高为tc≈7k。取决于沉积条件,可获得多晶或无定形膜,这两种膜对于实际使用而言都很有趣。使用放牧X射线衍射测定法鉴定出多晶相的晶体结构为非中心对称超导体。超导特性在电阻和磁性上都被表征。磁倍率和AC/DC敏感性测量值使我们能够确定这些膜的H C 1和H C 2,以及估计相干长度ξ(0)和磁穿透深度λL(0)。我们还提供有关这些膜表面形态的信息。在该材料中的超导性证明证明了Lu在周期元素表的6周期中扮演3组过渡金属的角色的观点。然后,类似于re – nb,re – ti,re – hf和re – zr,人们可以期望结晶re – lu也打破了时间反转的对称性。如果未来的实验证明了这一点,结合了非中心对称特征,这些膜可用于形成非偏置电流设备,例如超导二极管,而无需外部磁场。
标准互补金属氧化物半导体 (CMOS) 技术及其 FinFET 形式的先进技术推动了电子行业取得了非凡的成功。虽然 CMOS 技术可能会继续为下一代计算平台提供其非常强大的性能,但很明显,从长远来看,它在扩展方面面临重大挑战,受到功耗和功率密度限制,可能无法满足新兴应用的新需求。这将需要超越 CMOS 的技术来介入和增强 CMOS。无论是用于逻辑设计的节能可扩展开关设计,还是非易失性存储器,还是用于通用计算机和专用加速器的存储器和逻辑功能的集成,对应用量子材料来实现这些新型微电子设备的需求都激增。为了有效利用新兴技术独特且前景广阔的属性,至关重要的是,它们的实验发现和进步必须得到对基础物理及其在材料、器件、电路和系统层面的影响的理解的良好支持。为了加速和实现这一目标,新型材料和器件的建模有望发挥重要作用。一方面,模型应提供有关材料特性和设备操作和可扩展性的重要物理见解;另一方面,它们应能够高效准确地估计基于新兴技术的电路的性能和能效。因此,在我们应对寻找计算和存储革命性突破的挑战时,需要不同设计抽象级别的模型。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
摘要:钙钛矿太阳能电池 (PSC) 因其高效率和低成本制造而越来越受欢迎。近几十年来,人们投入了大量研究来提高这些电池在环境条件下的稳定性。此外,研究人员正在探索新材料和制造技术,以提高 PSC 在各种环境条件下的性能。柔性 PSC 的机械稳定性是另一个受到广泛关注的研究领域。最新研究还侧重于开发能够克服与铅基钙钛矿相关的挑战的锡基 PSC。这篇评论文章全面概述了 PSC 的材料、制造技术和稳定性增强策略的最新进展。它讨论了钙钛矿晶体结构工程、器件构造和制造程序的最新进展,这些进展已导致这些太阳能器件的光转换效率显着提高。本文还强调了与 PSC 相关的挑战,例如它们在环境条件下的稳定性较差,并讨论了用于增强其稳定性的各种策略。这些策略包括使用新型材料作为电荷传输层和封装技术来保护 PSC 免受湿气和氧气的影响。最后,本文对 PSC 研究的当前最新水平进行了批判性评估,并讨论了该技术的未来前景。本综述的结论是,PSC 作为传统硅基太阳能电池的低成本替代品具有巨大潜力,但考虑到其最终的商业化,需要进一步研究以提高其在环境条件下的稳定性。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
摘要:量子材料具有丰富的量子态和相,是正在兴起的第二次量子演化的主要力量。发现和理解量子物质的功能相并将其转化为技术进步至关重要。在本次演讲中,我将重点介绍高质量异质结和超晶格的开发和研究,以及探索这些新型材料平台的独特量子传输特性。我将首先展示如何在最小化无序和低电子温度下触发传统 GaAs/AlGaAs 界面中的量子向列相到近晶相的转变。然后,我将展示几种使用新型范德华 (vdW) 积分方法的独特方法,其中可以通过 vdW 相互作用在各种系统之间实现原子级平坦界面,并且可以扩展到形成高阶超晶格结构的多层。它们使一系列量子传输研究成为可能,包括观察铅卤化物钙钛矿中的弱局域化效应和铁电大极化子的形成,以及手性分子插层超晶格中的稳健自旋隧穿。受这些发现的启发,我还将讨论范德华积分为创造具有可设计化学成分、维数、层间距离和结构图案的新型人工量子固体带来的激动人心的机会,这为基础研究和量子技术开辟了全新的平台。
我们很高兴宣布MIT和TATA之间的五年合作,旨在提高围绕可持续性,新型材料和清洁能源的研究和企业家精神。这个独特的联盟汇集了六家Tata公司,例如Tata Steel,Tata Motors,Tata Motors乘用车,Tata Power,Tata Electronics和Agratas Eonvermation Storage Soriess Soluctions-和MIT研究人员,以开发高影响力创新。这项研究合作将重点关注六个旗舰主题,涵盖从材料和能源到运输和制造业的部门。我们邀请您提交塔塔 - 麻省理工学院联盟资金的建议,以支持您的研究。感兴趣的六个一般研究领域是:绿色钢,新材料,氢经济,能源存储,流动性的创新以及材料循环和价值。这些旗舰主题中的每个主题的更多详细信息都链接在一起,可以在此RFP的末尾找到。我们鼓励提案考虑印度独特的社会经济和环境环境,强调具有创新,易于访问,负担得起和对当地社区有益的技术的发展。如果您想提交建议,请使用以下链接访问预告表。目前,仅请求预先签名,尽管作为参考,我们在下面包括在整个建议阶段所需的内容。作为首席研究员(PI),您最多可以提交两个建议。欢迎单一和多PI提案。根据提案,最高要求为每年30万美元。
核能的广泛采用增加了被排放到废物流中的放射性剖宫产(CS)的数量,这些剖记可能具有环境风险。在本文中,我们通过使用文献计量分析提供了全面的CS去除水平进展的摘要。我们收集了与CS水性治疗有关的1580篇文章,该文章在2012年至2022年之间在Web of Science数据库上发表。通过应用文献计量分析与网络分析结合使用,我们揭示了在CS去除水域中的研究分布,知识库,研究热点和尖端技术。我们的发现表明,在CS拆除研究方面,中国,日本和韩国是最有生产力的国家。此外,历史事件和环境威胁可能会导致在亚洲国家的研究中,对CS的撤离以及亚洲国家之间的强大国际合作有助于研究。详细的关键词分析揭示了CS水溶液的主要知识库,并突出了基于吸附的方法治疗CS污染的潜力。此外,结果表明,功能材料的探索是CS删除领域中流行的研究主题。自2012年以来,包括普鲁士蓝色,氧化石墨烯,水凝胶和纳米粘剂在内的新型材料,由于其较高的CS去除能力,已广泛研究。根据详细信息,我们报告了有关CS水性水的最新研究趋势,并提出了未来的研究方向,并描述了与有效CS治疗相关的挑战。此科学计量审查提供了对当前搜索热点和尖端趋势的见解,除了有助于发展这一关键研究领域的发展。
JHR 是 CEA 卡达拉什正在建造的新型材料测试反应堆。目前,堆芯的中子特性是利用 HORUS3D/N 确定性方案计算的。该方案的工业路线采用两步法,首先是 APOLLO2 MOC 格子计算,然后是基于扩散理论的 CRONOS2 堆芯计算。APOLLO3 ® 是 CEA 新的确定性计算平台,它采用了先进的计算方法。在本文中,正在使用 APOLLO3 ® 带来的新方法为 JHR 建立一个新的参考计算方案。该计算方案通过 TRIPOLI4 ® 执行的参考随机模拟进行了验证。与在 APOLLO3 ® 中模拟 HORUS3D/N 方案的方案结果相比,格子步骤的改进可以显著减少燃料元件和 Hf 控制棒的吸收率偏差。新方案的主要变化在于使用子群自屏蔽法替代精细结构等效法。这些变化与细化几何网格和 383 能级组结构有关。来自晶格台阶的压缩截面用于计算插入五根 Hf 控制棒的 2D JHR 堆芯配置的中子平衡。新的计算方案中添加了堆芯反射器超级晶胞,以产生细化的反射器截面。使用较粗的 41 组结构执行的 MOC 2D 堆芯计算保留了晶格计算的改进,并可以更好地预测反应性和反应速率。下一步将使用包括堆芯实验装置在内的带耗尽层的 3D Sn MINARET 全堆芯计算。关键词:APOLLO3 ®、JHR、确定性计算方案、共振自屏蔽方法。