通过电气调整,电动频率波的振幅的主动操纵是下一代THZ成像的关键,对于解锁战略应用至关重要,从无线通信到量子技术。在这里,我们基于电源门控单层石墨烯演示了高性能THZ振幅调节剂。通过仔细控制四分之一波长腔结构中的间隔厚度,通过优化电场耦合来实现1.5 - 6 THZ范围内的宽带调制,最大调制深度在2 THz左右。拉曼表征通过石墨烯的电解质门控为0.39 eV的费米级调整。然后开发和测试具有独立控制亚毫米区域的测试2 2调节器阵列,像素之间没有串扰。报告的结果突出了电解石墨烯对有效THZ调制的潜力。单芯片设计可与其他电子组件相结合,并易于集成,使其成为THZ空间光调节器和自适应光学组件的有前途的平台。
摘要:金属 - 氧化物 - 氧化物 - 氧化型晶体管晶体管(MOSFET)的持续微型化需要不断保存的栅极氧化物的厚度。但是,超薄硅氧化物纤维的结构在很大程度上取决于氧化机制。使用反应性原子模拟,我们在这里演示了如何通过氧化温度和氧化能量控制此类结构的氧化机制。特别是,我们研究了高热氧与1-5 eV的高热氧与薄的SiO X(X≤2)膜,其天然氧化物厚度约为10Å。我们分析了氧渗透深度概率,并与裸露的Si(100){2×1}(C -Si)表面的过度热氧化的结果进行比较。详细讨论了依赖温度的氧化机制。我们的结果表明,在低(即房间)温度下,穿透的氧气主要驻留在氧化物区域,而不是在Sio X |中。 C -SI接口。然而,在较高的温度下,从约700 K开始,发现氧原子可以穿透并通过氧化物层扩散,然后在C -SI边界处进行反应。我们证明了高温氧化类似于热氧化,可以在高温下通过交易 - 谷林模型来描述。此外,还分析了在氧化过程中发生的缺陷创造机制。■简介这项研究对于金属 - 氧化物 - 氧化物 - 氧化氧化物氧化物的制造很有用,因为它连接了可以在实验中直接控制的参数(氧气温度,速度)与硅氧化物结构。
在被子植物中,斯特龙酮受体是α /β水解酶dwarf14(d14),在strigolactone结合后,经历了构象变化,触发了strigolactone依赖性反应,以及strigolactones。strigolactone信号传导涉及在strigolactone结合的D14,E3-泛素li gase scf max2和转录核心代理SMXL6/7/8之间形成复合物,这些corepressors smxl6/7/8被泛素化和降级。strigolactone也破坏了D14受体的稳定性。当前模型提出D14通过SCF MAX2和蛋白酶体降解在SMXLS泛素化后发生D14降解。使用荧光和发光测定在表达与绿色荧光蛋白或荧光素酶的D14的转基因线上,我们表明,strigolactone诱导的D14降解也可能独立于SCF MAX2和/或SMXL6/7/8,通过蛋白酶体依赖性依赖性机制发生。此外,斯特龙酮水解对于触发D14或SMXL7降解不是必不可少的。还检查了突变体D14蛋白的活性,预测对斯特龙酮SIG nalling的功能是非功能的,并使用差异扫描荧光法研究了它们在体外结合Strigolactone的能力。最后,我们发现在某些条件下,D14降解的效率与SMXL7降解的效率不符。这些发现表明,与以前预期的有关D14降解的更复杂的调节机制,并提供了拟南芥信号传导动力学的新见解。
PRIME Education, LLC (PRIME®) 遵守 ACCME 的《经认可的继续教育诚信和独立性标准》,符合联合认证。这些标准要求每个控制继续教育活动内容的人披露与商业利益的所有财务关系。继续教育活动必须提供公平、平衡的内容,不受商业偏见的影响,并旨在提高医疗保健质量。所有涉及临床医学的建议都必须基于医学界接受的证据。当控制继续教育活动内容的个人与商业利益存在相关财务关系,而这种关系可能会影响他/她的观点和教学时,就会产生利益冲突。这可能包括获得薪水、版税、知识产权、咨询费、酬金、股票或其他财务利益。PRIME® 已确定、审查并缓解了演讲者、作者、课程主管、规划者、同行评审员或相关工作人员在开展任何教育活动之前披露的所有利益冲突。披露关系并非旨在暗示或纵容任何演讲中的偏见,而是为了向参与者提供可能对他们评估演讲具有潜在重要性的信息。这些材料中包含了演讲者、作者、课程主管、策划者、同行评审员和/或相关工作人员的披露信息。
对现有抗感染药物具有耐药性的感染的蔓延对人类健康构成了严重威胁。世卫组织预测,在不到 30 年的时间里,微生物耐药性将成为导致死亡的主要原因。然而,即将获批用于治疗的新型抗感染药物或目前正在开发的药物却很少。为了对抗耐药性微生物,发现和验证新靶点是非常必要的,只有具有新作用模式且能够摆脱现有耐药机制的创新药物才能成为有效的解决方案,以对抗耐药性感染的持续出现和蔓延。本期特刊共包含 11 篇完整的研究文章、简短通讯和评论,可让您一窥致力于微生物耐药性的药物化学研究的最新进展。在本文提出的主题中,细菌对现有抗生素的耐药性占了很大一部分,科学界正在努力寻找新的抗生素来克服细菌的耐药性。 Seyler 等人的论文重点关注了生物膜对耐药性感染的可能性 [ 1 ]。生物膜确实是控制耐药菌株的一个创新靶点。作者揭示了新的抗感染分子,它通过靶向调节氨酰-tRNA 合成酶和氨基酸代谢基因表达的 tRNA 依赖性调控 T 盒基因来抑制生物膜生长。通过计算机筛选鉴定出活性分子,并在体内进行验证,结果显示,它们对生物膜中金黄色葡萄球菌的生长抑制作用比万古霉素强 10 倍。此外,对于鉴定出的化合物,与庆大霉素和利福平联合使用时检测到了协同作用。选定的靶点和获得的结果强调了靶向作用于人类宿主中不存在但对细菌细胞生存必不可少的关键和特定细菌功能的重要性。 T-box 是一个独特的靶点,可用于开发针对致命性和耐药性革兰氏阳性病原体的小分子抗菌生物膜疗法。在论文中,Hennessen 等人讨论了氨基四环素(一种生物活性 NP 氯苯那敏的生物合成衍生物)克服已知细菌耐药机制的能力 [2]。氨基四环素是一种广谱抗菌药,可有效对抗 ESKAPE 组临床相关细菌。研究了这种非典型四环素逃避常见耐药机制(即外排过程)的能力,并针对大量耐多药 (MDR) 尿路致病临床分离株进行了验证。该分子是一种有希望开发成未来疗法的候选药物。Kavaliauskas 等人研究了金黄色葡萄球菌的抗菌素耐药性 [3]。作者讨论了一系列 5-硝基-2-噻吩甲醛衍生物。因此,对于最活跃的分子,预测了基于计算机结构的药理特性和毒性。在生物测定中,该化合物显著损害了金黄色葡萄球菌生物膜的完整性,显示出对多药耐药金黄色葡萄球菌的良好抗菌活性。所得结果表明,所鉴定的铅作为万古霉素耐药金黄色葡萄球菌 (VRSA) 靶向抗菌剂具有治疗潜力。
普渡大学,2023 年 1 月 27 日 摘要 目的。基于血管周围空间的解剖学和力学,探索脑间质组织液流动的生物物理学,以便更好地了解淋巴液流动的发生方式。方法。在可快速计算的、分支的、多尺度的脑组织几何模型中研究心脏频率下的液体流动动力学。这些模型由混合的穿透动脉和静脉树提供。它们包括颅内压和血管内压的脉动变化、脑组织的弹性扩张以及沿 Virchow-Robin 空间轴的脑脊液流动阻力的非线性变化。在笔记本电脑上计算由此产生的动脉周围和静脉周围压力的变化以及由此产生的从小动脉到小静脉血管周围空间的间质液批量流量。结果。在典型的生理条件下,较小的远端动脉周围分支和静脉周围分支之间会产生约 0.5 mmHg 的时间平均正压。根据组织几何形状和液压阻力,产生的流量足以每 1 到 10 小时更新一次间质液。增加血管周围空间的径向宽度会降低这种效果。计算出的整个大脑的平均淋巴流量与蛛网膜绒毛测量到的新脑脊液产生量相似。结论。当适当考虑血管周围树的分支结构时,它们的经典解剖结构具有令人惊讶的新兴特性。在动脉周围和静脉周围空间较小的远端分支之间可以发生具有生物学意义的平流量。关键词。平流、阿尔茨海默病、淀粉样蛋白、生物物理学、血脑屏障、体积流量、脑脊液、循环、细胞外、液压、颅内压、血管周围泵送、通透性、软脑膜、脉动、蛛网膜下腔、Virchow-Robin 腔、废物。
材料的质超塑性是一个重要研究的重要领域,因为它在流动机制领域中呈现出重要的挑战,并且因为它形成了商业超规模形成行业的基础,其中复杂形状和弯曲部分是由超塑性金属形成的[1,2]。众所周知,必须满足两个基本要求才能达到超塑性流。首先,超塑性需要很小的晶粒尺寸,典型的小于约10μm。其次,超塑性是一个具有晶粒边界(GB)滑动的扩散控制过程 - 作为主要流动机制 - 因此,它需要相对较高的测试温度,通常在或高于约0.7-0.8×T m,其中T m是材料的绝对熔化温度。同时,在过去的二十年中,金属材料的开发通过严重的塑料变形(SPD)进行了纳米化范围的超细晶粒,从而铺平了朝着超塑性领域的新发现铺平的道路[3,4]。实际上,
神经干细胞(NSC)由于其强大的神经保护性和再生性质而成为细胞治疗的候选者的非常重要的希望。使用NSC的临床前研究表明,有足够的令人鼓舞的结果,可以对更深入的临床应用进行更深入的研究。 然而,我们对神经发生及其潜在机制的了解仍然不完整。 为了更好地理解它们,似乎有必要表征神经干细胞生态位的所有组成部分,并发现它们在生理和病理学中的作用。 使用NSC在体内带来挑战,包括有限的细胞存活和宿主组织内的整合不足。 识别可能影响这些结果的被忽视因素变得关键。 在这篇综述中,我们对大脑中存在的基本元素,脑脊液(CSF)的影响进行了更深入的研究,该元素仍然相对尚未探索。 其在神经发生中的作用可能有助于帮助找到神经系统疾病的新型治疗解决方案,最终促进了我们对中枢神经系统(CNS)再生和修复的知识。使用NSC的临床前研究表明,有足够的令人鼓舞的结果,可以对更深入的临床应用进行更深入的研究。然而,我们对神经发生及其潜在机制的了解仍然不完整。为了更好地理解它们,似乎有必要表征神经干细胞生态位的所有组成部分,并发现它们在生理和病理学中的作用。使用NSC在体内带来挑战,包括有限的细胞存活和宿主组织内的整合不足。识别可能影响这些结果的被忽视因素变得关键。在这篇综述中,我们对大脑中存在的基本元素,脑脊液(CSF)的影响进行了更深入的研究,该元素仍然相对尚未探索。其在神经发生中的作用可能有助于帮助找到神经系统疾病的新型治疗解决方案,最终促进了我们对中枢神经系统(CNS)再生和修复的知识。
MichaelGütschow1,Jean Jacques Vanden Eynde 2,Josef Jampilek 3,Congbao Kang 4,Arduino A. Mangoni 5.6,Paola Fossa 7,Rafik Karaman 8.9,Andrea Trabocchi 10 Brullo 17,Katalin Prokai-Tatrai 18,Arun K. Sharma 19,Matthieu Schapira 20,21,Yasu-Taka Azuma 22,Laura Cerchia 23,Mariana Spete Giacomo 25,Simon Toria 25,Simon Toria 25,Athina Geronikaki 27 Sousa 32,33,Ivan Kosalec 34,Tiziano Tuccinardi 35,Iola F. Duarte 36,Jorge AR,Massimo Massimo 37 Pellecchia 39,Jussara Amato 15,Giulio Rastelli 40 o Pagano 15,Stefano Mangani 45,Rino Ragno 46,Marghesi Kosi,15 7 FlorenciV.González48,Fernanda Borges 49,Mariarosaria Miloso 50,Jarkko Rautio Rautio Rautio 51和DiegoMuñoz-Torrero 52, *
生物信息学,检测影响神经退行性疾病的遗传变异,尤其是阿尔茨海默氏病;神经退行性疾病的多摩学整合;单细胞和空间转录组中神经退行性疾病的新机制