摘要:尽管取得了重大进展,但癌症仍然是一种难以治疗的疾病。严重的副作用、耐药性的爆发和较差的选择性是目前临床使用的经典金属抗癌疗法的一些问题。仍然需要新的治疗方法来提高癌症患者的生存率,避免癌症复发。在此,我们回顾了两种有前途的(至少在我们看来)新策略来提高过渡金属配合物的疗效。首先,我们考虑了将两个含有不同金属中心的生物活性片段组装到同一分子中的可能性,从而获得异双金属配合物。与单金属配合物进行了关键比较。所审查的文献分为两类:铂的情况;金的情况。其次,讨论了金属配合物与靶向部分的结合。特别是,我们重点介绍了一些有趣的例子,即根据三级靶向方法靶向癌细胞器的化合物,以及根据二级靶向策略靶向整个癌细胞的复合物。
通过证明USP7抑制作用在临床前测试中对EBV阳性癌症有效,Lieberman Lab为EBV阳性癌症及其他地区的这种策略提供了更多研究,为这项策略铺平了道路。由于USP7与EBV的关系类似于它与其他可能引起其自身癌症的疱疹病毒的关系,因此USP7抑制作用可能具有与非EBV疱疹病毒癌的可比性。
摘要:为了减少温室气体排放,世界各地越来越多地使用可再生能源来替代天然气、煤炭和石油等化石能源。生态工业园区在集体自用框架下促进工厂之间可再生能源的使用和共享。本文介绍了一种生态工业园区光伏自用新策略,该策略结合了集体和个人自用。该策略与经典的自用配置进行了比较,在经典的自用配置中,工厂不共用光伏装置。针对这两种配置,提出了并求解了两个数学模型,结果表明,新策略比经典的个人自用配置更有效率。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:多年来,研究人员一直在努力开发最有效的方法来对抗肺癌,肺癌是全球男性和女性中癌症相关死亡人数最多的疾病。几乎所有非小细胞肺癌 (NSCLC) 类型的最先进的治疗方法包括免疫检查点抑制剂 (ICI) 免疫疗法,主要是抗程序性死亡 1/抗程序性死亡配体 1 单克隆抗体 (抗 PD-1/PD-L1 mAb) 的单一疗法或与其他策略联合使用。尽管取得了重大进展,但在大多数情况下无法实现长期生存,因此人们不断寻求新的解决方案。肿瘤学家提出的问题之一是 ICI 对分子驱动变异患者的疗效,尤其是当使用分子靶向疗法的可能性已经耗尽时(例如由于对酪氨酸激酶抑制剂产生耐药性)。有研究正在调查这个问题,但描述仍然很少。免疫疗法失败的可能原因之一是具有一个驱动突变的肿瘤免疫原性低。然而,在某些情况下,这种疗法是有效的,需要更多的研究来确定具有致癌驱动异常的 NSCLC 患者的治疗。本文旨在回顾这方面的最新发现。
Neddylation 是一类将泛素样蛋白 NEDD8 与底物蛋白连接在一起的蛋白质翻译后修饰,可参与多种重要的细胞过程并产生多种生物学效应。目前,Neddylation 底物研究最为深入的是 Cullin 蛋白家族,它是 Cullin-RING E3 泛素连接酶复合物的核心亚基,通过促进多种关键调控蛋白的泛素化和随后的降解来控制许多重要的生物学过程。中枢神经系统中蛋白质 Neddylation 的正常或异常过程可导致一系列正常功能的发生和疾病的发展,从而提供一种有吸引力、合理且有效的靶向治疗策略。因此,本研究对中枢神经系统中的 Neddylation 现象进行综述,并总结相应的底物,最后详细描述了 Neddylation 与中枢神经系统疾病的关系以及可能通过调控 Neddylation 来治疗相关疾病的治疗方法。
癌症免疫周期为抗癌免疫反应中的一系列事件提供了一个框架,该事件是由T细胞介导的肿瘤细胞杀死引发的,这导致抗原表现和T细胞刺激。当前针对乳腺癌的免疫调节疗法通常与短持续时间相关,靶向作用部位较差以及严重的副作用。水凝胶及其细胞外基质的特性,可调的特征和多样化的生物活性性,引起了人们对局部传递免疫调节剂和细胞的能力的显着关注,从而提供了免疫调节性的微型微环境,以促进,激活和扩展宿主免疫细胞。本综述着重于水凝胶平台的设计考虑因素,包括聚合物主链,交联机制,物理化学特性和免疫调节成分。突出显示了各种水凝胶系统在乳腺癌治疗和组织再生中的免疫调节作用和治疗结果,包括用于免疫调节剂输送的水凝胶库,用于细胞输送的水凝胶支架以及依赖于固有材料的免疫调节水凝胶。最后,讨论了当前系统和未来的免疫调节水凝胶方向的挑战。
多巴胺 (DA) 神经元活动和信号传导在调节控制各种行为输出的大脑回路中起着至关重要的作用,包括(但不限于)动机、运动控制、奖励处理和认知 (1–3)。中脑 DA 神经元大致可细分为两个主要核,即黑质致密部 (SNc) 和腹侧被盖区 (VTA)。SNc 的 DA 神经元投射到背侧纹状体 (DS),而 VTA 的 DA 神经元投射到伏隔核 (NAc) 和皮质区域 (4)。此外,DS 和 NAc 可进一步细分为具有不同皮质和丘脑输入的解剖区域。例如,外侧 DS 接收来自运动皮质的大量输入,并大量参与运动学习、习惯行为和动作选择 (5–9)。相比之下,内侧 DS 接收来自体感皮层的输入,可以在塑造目标导向行为、强迫行为和技能学习方面发挥关键作用(10-12)。同样,NAc 可以细分为核心和外壳区域,具有不同的投射模式和输入,与动机行为、显着性和奖励处理有关(13-15)。DA 能够调节如此广泛和多样化的行为输出,至少部分归因于 DA 神经元亚群整合到仅涉及这些行为结果的子集的大脑回路中。与 DA 在调节这些回路中的关键作用一致,DA 信号失调被认为在许多疾病中起着关键作用,包括精神分裂症、抑郁症、物质使用障碍和帕金森病。
摘要 安全认证是信息安全最重要的层面之一。如今,人体生物特征识别技术是用于认证目的的最安全方法,它涵盖了密码和 PIN 等旧式认证方式存在的问题。最近的生物特征识别技术在安全性方面有很多优势;然而,它们仍然存在一些缺点。技术的进步使得一些特定的设备成为可能,因为它们都是可见和可触摸的,因此可以复制和制作假的人体生物特征识别。因此,需要一种新的生物特征识别技术来解决其他类型的问题。脑电波是人体数据,它将其用作一种新型的安全认证方式,吸引了许多研究人员的关注。有一些研究和实验正在调查和测试脑电图信号以发现人类脑电波的独特性。一些研究人员通过应用不同的信号采集技术、使用脑机接口 (BCI) 进行特征提取和分类,在这一领域取得了很高的准确率。任何 BCI 过程的一个重要部分是获取和记录脑电波的方式。本文针对脑信号的授权和认证过程提出了一种新的信号采集策略。这是通过预测用户大脑中的图像记忆能力,将心理意象用作安全认证的可视化模式。因此,用户可以通过在脑海中可视化特定图片来验证自己的身份。总之,我们可以看到脑电波会根据心理任务而有所不同,这使得将它们用于认证过程变得更加困难。基于大脑的认证有许多信号采集策略和信号处理,通过使用正确的方法,可以实现更高的准确率,适合将脑信号用作另一种生物特征安全认证。