概念性场地规划可能包含以下信息: 一张显示该物业相对于主要街道、铁路和水道的大致位置的周边地图。 一张地块图纸,包括地块识别号。如果仅重新划分地块的一部分,则必须提供按比例绘制的地籍图,显示所申请部分的方位和距离。 该物业上所有现有的地役权、保留地和通行权。 划定监管洪泛区内的区域(如美国联邦紧急事务管理局针对爱尔德县的洪灾边界图所示),并划定标有各自分类和不透水计算值的流域边界。 对于住宅用途,提供单元数量和建筑物所在区域的大致轮廓。对于非住宅用途,提供所有建筑物的大约面积和建筑物所在区域的轮廓。 交通、停车和流通规划,显示停车位和通往相邻街道的入口的拟议位置和安排,包括典型的停车位尺寸和位置以及典型的街道横截面。这应包括所有现有和拟议的公共街道入口。 本条款要求和申请人提议的所有拟议退让、缓冲、屏障和景观美化。 有关建筑物数量、高度、大小和位置的一般信息。 项目的拟议分阶段。 所有标志的拟议数量、位置、类型和大小。
摘要 — 安柏瑞德航空大学的 Minion 团队将重返 RobotX,对其卫冕冠军全自动水面舰艇 (ASV) Minion 进行重大改进。Minion 团队的新设计策略和系统工程方法称为 Minion Process,实现了整个团队在学术、研究和团队目标之间的平衡。这种设计策略与重视安全和创新的严格多步骤测试流程相结合,为 Minion 及其无人驾驶飞行器 (UAV) Kevin 带来了不断改进的工具集。这些包括对正在申请专利的新控制方案的软件增强和整个系统的计算机视觉更好地集成,以及对方位电机控制、新无人机功能和新球发射器的硬件改进。该团队对这些工具的赛前评估产生了一个强有力的竞争策略,其基础是最大化分数同时最小化风险。该团队的任务跟踪器 MinionTask 将根据评估的战略价值、已知的路线信息和剩余时间动态选择任务,以优化资格赛、半决赛和决赛中的比赛表现。根据模拟和水上测试的结果,Minion 队有信心完成九项 RobotX 2024 任务中的至少六项,并希望重复其冠军表现。
AAEE 飞机与军备实验机构 AOC-in-C 空军军官总司令 AS 反潜 BBSU 英国轰炸调查单位 BCATP 英联邦空军训练计划 CAS 空军参谋长 CBRM 加州方位比率法 CFC 中央飞行管制 CIGS 帝国总参谋长 C-in-C 总司令 CNS 海军参谋长 CRD 民用修理站 EATS 帝国航空训练计划 FCO 飞行管制组织 FCS 飞行管制参谋部 HC 高容量 HCU 重型改装装置 HE 高爆弹 HMS 国王陛下的舰船 hp 马力 ID 识别 kW 千瓦 LMF 缺乏道德品质 MAP 飞机生产部 MP 国会议员 MPH 英里每小时 NOCOP 禁止复印 OTU 作战训练单位 POL 汽油和润滑油 PRO 公共档案办公室 RAE 皇家飞机研究院 RAF 皇家空军 RAAF 澳大利亚皇家空军 RCAF 加拿大皇家空军空军 RN 英国皇家海军 RNAS 英国皇家海军航空兵团 RNZAF 新西兰皇家空军 SAA 小型武器弹药 SAE 美国工程师协会 SAP 半穿甲弹 SHAEF 最高司令部 盟军远征军 SIGINT 信号情报
电子支援措施(ESM),提供敌方发射器的发射器信息、范围和方位 磁异常探测器(MAD),在攻击前确认海面下大型金属物体(潜艇)的存在 声学传感器,提供检测和跟踪水下物体通过的手段 任务计算,整理传感器信息并提供融合数据 防御辅助设备,提供检测导弹袭击和部署对抗措施的手段 武器系统,用于武装、指挥和从飞机武器站发射武器 使用各种不同的视距、高频(HF)或卫星通信系统进行通信 定位保持,在无法使用定位灯的条件下,提供安全保持队形的手段 电子战系统,检测和识别敌方发射器,收集和记录流量,并在必要时提供干扰传输的手段 摄像机,用于记录武器效果,或为情报目的提供高分辨率地面图像 平视显示器,为机组人员提供主要飞机信息和武器瞄准信息头盔显示器为机组人员提供主要飞行信息和武器信息,同时允许头部自由活动,数据链路使用数据而不是语音在安全通信下传输和接收消息
通过产生的粒子之间的相互作用,碰撞相对论核重叠区域初始能量密度的空间不对称性转化为最终状态下粒子动量分布的不对称性。 由此产生的不对称性携带着有关碰撞过程中产生的 QCD 物质的传输特性的信息。 在对产生的粒子相对于反应平面的方位分布进行傅里叶分解时,不对称通常用 vn 系数来量化。 NA61/SHINE 有一种独特的方法可以通过弹丸观众探测器估算反应平面(详情见参考文献 [ 3 , 4 ])。 流动系数的能量依赖性尤为重要。在 RHIC 的 SPS 和束流能量扫描程序的能量下,预计中速质子定向流的斜率 dv 1 / dy 会改变其符号 [ 5 , 6 , 7 ] 。图 2 显示了 13 A 和 30 A GeV/ c 的 Pb+Pb 碰撞中 π − 和 p 的定向流以及 dv 1 / dy(中心性依赖性)。质子和带负电的介子的 v 1 ( p T ) 的形状(图 2 左)不同。质子的 v 1 ( p T ) 在整个 p T 范围内为正。带负电的介子的定向流从负值开始
利用三维动力学模拟,我们研究了具有预填充圆柱形通道的结构化激光辐照目标所发射的准直伽马射线束。该通道引导入射激光脉冲,从而产生缓慢发展的方位等离子体磁场,该磁场有两个关键功能:增强激光驱动的电子加速和诱导高能电子发射伽马射线。我们的主要发现是,通过利用具有最佳密度的通道,可以在不增加激光强度的情况下显著提高激光能量到伽马射线束 (5 ◦ 开角) 的转换效率。当我们将 P 从 1 PW 增加到 4 PW 时,保持激光峰值强度固定在 5 × 10 22 W/cm 2 ,转换效率随着入射激光功率 P 大致线性增加。这种缩放是通过在通道中使用 10 到 20 n cr 之间的最佳等离子体密度范围来实现的,其中 n cr 是电磁波的经典截止密度。相应的光子数按 P 2 缩放。一个直接受益于这种强缩放的应用是通过双光子碰撞产生对,在固定激光强度下,产生的对的数量按 P 4 增加。
抽象灾难本质上是不确定且不可避免的事件,它影响了不利的社会,经济,环境和人道主义部门。地理信息系统(GIS)和遥感(RS)在灾难管理中是非常有用和有效的工具。各种灾难,例如地震,滑坡,洪水,火灾,海啸,火山喷发和旋风是自然灾害,每年杀死许多人并摧毁财产和基础设施。远程感知的数据可非常有效地用于评估由于这些灾难而造成的损害的严重性和影响。这些研究的主要目的是使用这些应用程序和技术来了解其性质,从而确定地理空间科学和技术在灾害风险管理中的重大应用,这将有助于响应和解决复杂的灾难风险管理问题和决策。在救灾阶段,与全球定位系统(GPS)分组的GIS在遭受破坏和难以找到自己的方位的地区的搜索和救援行动中非常有用。灾难映射是通过过度自然或人为的麻烦来绘制的,这些区域遇到了生命,财产和国家基础设施损失的正常环境。灾难管理的成功在很大程度上取决于在正确的时间和正确位置对信息做出的决定。
摘要 研究了低压射频 (RF) 驱动磁增强电容耦合等离子体中的电子动力学和功率吸收机制。重点研究的装置是一个几何不对称的圆柱形磁控管,轴向具有径向不均匀的磁场,径向具有电场。使用冷等离子体模型和单粒子形式对动力学进行分析研究,并使用内部能量和电荷守恒粒子室内/蒙特卡罗碰撞代码 ECCOPIC1S-M 对动力学进行数值研究。发现动力学与未磁化的参考放电有显著不同。在通电电极前方的磁化区域中,在鞘层膨胀期间会产生增强电场,在鞘层塌陷期间会产生反向电场。这两个场都是确保放电维持电子传输以抵抗磁场限制效应所必需的。相应的方位 E × B 漂移可以将电子加速到非弹性能量范围,从而产生一种新的射频功率耗散机制。它与霍尔电流有关,性质上不同于欧姆加热,以前的文献中将其归类为欧姆加热。这种新的加热方式有望在许多磁化电容耦合放电中占主导地位。建议将其称为“µ 模式”,以将其与其他加热模式区分开来。
为了符合 PANS-OPS 标准,SID 图表将越来越多地按比例绘制,并且暂时将与示意图共存。它们可以对齐以充分利用可用空间,并且为了清晰起见,在特殊情况下,不按比例绘制。应参考已发布的图形和文本执行程序。显示了从州 AIP 中获取的 MSA 圆圈。特殊使用空域仅在与航线重叠或相邻时显示。每个 SID 的第一个潜在“突破”级别在图形上以白色字体显示在黑色六角形框中;在文本中,它以白色字体显示在黑色长方形框中。对于某些 SID,AIP 引用“Cleared Alt/FL”。在 No1 AIDU 图表上,“Cleared Alt/FL”在文本中使用时表示飞机可以爬升到的高度/飞行高度,而无需寻求进一步爬升许可,除非另有说明并假设没有 ATC 限制生效。 “已获准的高度/高度层”不一定允许无限制爬升,在已获准的高度/高度层之前的 SID 中,必须遵守高度/高度/高度层交叉条件,包括“临界”水平。显示要飞行的轨迹,后面是括号中的相应径向/方位(如果相关);例如 Tr 271° (DVR 091R)。当 SID 文本开头使用术语“前方”时,飞行员应在跑道 QFU(跑道磁方位)上爬升,该跑道显示在图表上每个 SID 的跑道指示符下;(是否应用漂移由国家法规决定)。
莱考夫和约翰逊的理论认为,隐喻不仅仅是语言手段,还代表了我们思维的结构方式。从这个角度来看,隐喻表明,我们的身体感知和与具体世界的互动是理解抽象概念的必要基础。例如,在结构隐喻中,一个抽象概念是通过另一个抽象概念进行隐喻构建的。一个典型的例子是隐喻“争论就是战争”,其中每一次分歧的动态都被描述成一场战斗,强调对抗中的对抗性而非合作性(莱考夫和约翰逊,2008 年)。这种隐喻思维模式简化了复杂的概念,使人们能够更直接地理解,但它也会限制对现实某些方面的感知。同时,我们用来简化抽象概念的隐喻深深地限制了我们的具身思维。方位隐喻对于具身理论尤为重要,因为它们将概念组与空间位置或运动联系起来,从而遵循我们物理世界的规则。同样,我们在幼儿时期具体学到的关于物理世界的知识类似于抽象概念。Lakoff 和 Johnson 举的一个例子是“快乐是向上,悲伤是向下”,它有物理基础。事实上,当我们沮丧时,我们的姿势会反映出来;当我们快乐时,我们会直立。通过本体论隐喻,我们将抽象概念当做对象来谈论。从本质上讲,根据 Lakoff 和 Johnson (2008) 的说法,隐喻是人类语言不可或缺的元素,也是我们思维具身性的证据。