在所有情况下,目的都是生成典型的校准数据(见第 5.4 节)。因此,执行的数值模拟使用的压力值范围为 10 至 120MPa 的数据集,测量范围为 12 比 1。此外,对于许多数据集,没有指定 10 至 30MPa 之间的数据,即在测量范围的前 20% 左右,这是 ~P 方法实际使用中必须省略的。以施加载荷(类似压力)值的分数测量的随机质量误差(类似压力误差)的大小对应于平均约 1 百万分率 (ppm) 的误差,许多实验室可能会超过这个值。此外,施加载荷值加上系统误差的大小对应于 1 克的误差。
摘要:在这项研究中,通过模拟的深海摩擦和磨损测试系统研究了不同静水压力(0.1-60 MPa)下多层石墨样碳(GLC)涂层的摩擦学行为和机制。透明的摩擦界面的形态和组成被彻底表征。调查结果表明,在静水压力升高或重负荷条件下,摩擦系数(COF)更大(但未超过0.02)。GLC涂层主要经历磨料磨损,并且磨损程度随着静水压力和负荷的增加而增强。摩擦界面的石墨化和基于硅的润滑产物的生产变得越来越明显。因此,通过改变摩擦接触表面的状态来实现静水压力对GLC涂层摩擦性能的影响。本质上,静水压力通过产生额外的压缩负荷来修饰摩擦对的实际接触面积,以使静水压力的增加对施加载荷的增加具有相似的影响。随着静水压力和施加载荷的增加,摩擦对表面上磨损平滑的趋势变得更加明显。在摩擦过程中生成的石墨转移膜和基于硅的材料改善了摩擦对的润滑性能,从而导致摩擦对磨损极低。
船舶和其他结构中使用的钢材的断裂行为主要受以下因素控制:(1) 使用条件,即载荷速率和环境温度;(2) 钢材的机械性能;(3) 结构的设计和制造;以及 (4) 操作条件。使用条件影响机械性能,因为不同钢种的机械性能对载荷速率和温度的反应不同。设计和制造,包括构件的冗余和结构细节的局部几何形状(应力集中),决定了局部应力的大小和分布以及结构对外部施加载荷的响应。装载船舶的程序会影响操作条件。因此,在制定结构部件的断裂控制计划和评估极高加载速率对断裂控制的影响时,必须考虑所有这些因素。!!c,但是,由于改变加载速率的主要影响是改变钢材的机械性能,因此本文将重点讨论速率对钢材强度和断裂特性的影响。
这项研究重点是针对电池组装过程的专业机械夹具的设计和分析,特别是对相关力和变形的研究。该项目从全面的市场研究开始,以确定现有的解决方案。这是使用计算机辅助设计(CAD)的需求定义和迭代设计过程。随后,使用Abaqus CAE中的有限元方法(FEM)进行了全面的力和变形分析。结果表明,设计的抓手可以承受最小变形的施加载荷,表明它具有足够的结构刚度。证明了有限元方法(FEM)分析在评估提出设计的生存能力时的实用性。根据本研究的设计和分析,它设法提出并开发了一种比市场上可用的抓地力范围更高的抓地力范围。这些发现有助于更深入地理解抓地力设计对预期载荷的适用性,并强调了所采用的设计方法的重要性。
对于金属、陶瓷和复合材料等工程材料而言,疲劳是迄今为止最常见的失效原因。从断裂力学角度而言,疲劳意味着由于重复(周期性)施加载荷而导致材料机械阻力的下降,而该载荷本身不足以导致材料静态失效。疲劳失效定义为达到预定材料损伤或裂纹扩展水平所需的循环数或时间。对于工程结构(如桥梁),结构不仅设计为抵抗最大静态载荷,而且更重要的是,在需要修复之前,还要支撑一定数量的载荷循环(例如由日常交通引起)。尽管这些概念已被土木工程师广泛且实际地实施,但这些想法尚未彻底融入对骨骼作为结构材料的理解中,或融入人类脆性骨折的临床预防中。在骨骼研究中,主要的断裂机制仍不确定:骨骼是否更容易在循环载荷下因疲劳机制而断裂,就像大多数工程材料一样,还是它们更容易在单次过载下以静态断裂模式断裂,就像大多数关于骨骼脆性的研究所暗示的那样 1 ?有说服力的证据表明疲劳驱动裂纹扩展机制广泛参与骨折
机械组件和结构的组成结构元件具有复杂的几何形状,导致局部应力/应变集中现象。这些带缺口的结构部件经常受到随时间变化的载荷,这可能导致疲劳裂纹的产生和扩展。在非常特殊的情况下,使用中的载荷路径包括恒幅 (CA) 疲劳循环。然而,在大多数实际情况下,结构部件受到变幅 (VA) 载荷谱的影响。除此之外,疲劳设计问题进一步复杂化,因为一般来说,实际使用中的载荷历史本质上是多轴的。就受到 CA 多轴疲劳载荷的无缺口金属材料而言,对现有技术的检查表明,使用各种设计标准可以达到良好的精度水平 [1] 。然而,尽管设计可靠性如此令人鼓舞,但显然还需要做更多的工作,以便更好地将材料微观结构的影响纳入疲劳设计过程 [2] 。在此背景下,关键问题是具有不同延展性的材料对施加载荷历史的非比例性程度表现出不同的敏感性 [3] 。虽然已经进行了大量工作来研究普通金属材料的多轴疲劳行为,但迄今为止,国际科学界尚未对多轴疲劳行为进行深入研究。
1物理系,1 Sam Higginbottom农业,技术与科学大学,Naini,Prayagraj-211007,北方邦,印度摘要 - Young的石墨烯模量及其衍生物及其衍生物的衍生物估计在沿Armchair方向及其沿着Zigzag方向应用时施加载荷。对于杨氏模量,使用弹性常数,取决于样品长度,宽度和厚度。因此,在石墨烯及其衍生物的加载案例中绘制了Young的模量长度图。发现,Young的模量随着恒定宽度而增加,而单层的Young模量大于双层。在扭曲的双层石墨烯的情况下,Young的模量以扭曲角度降低。关键词 - 弹性常数,Young的模量,扭曲的石墨烯和SWNT。简介 - 石墨烯片是在蜂窝结构中组织的二维碳原子。它与六角蜂窝晶格紧密结合。图1个石墨烯片的示意图。通常,六边形结构具有五个独立的弹性常数。这些如下; C 11,C 12,C 13,C 33和C 44。C 11和C 12更负责弹性。so,
碳纤维增强聚合物(CFRP)复合材料由于其出色的强度与重量比,广泛用于工程应用中。这些复合材料受到恒定和可变的各种负载,这使它们容易在结构中损坏积累。这降低了他们的使用寿命并对他们的表现产生负面影响。这项研究研究了使用低周期疲劳(LCF)程序在一个标本和可变载荷的恒定载荷下进行CFRP层压板的故障行为,直到在两种测试中都达到完全失败为止。实验过程涉及使用专门设计的设备,一旦将其牢固地固定到位,就可以通过内部气压施加载荷。根据其最大挠度测量值对标本的观察到的变形进行跟踪。实验结果与理论结果吻合良好。在试样失败时,样品在静态载荷下的最大挠度为(8.975 mm);相比之下,在样品的内部结构逐渐恶化之前,在样品的内部结构逐渐恶化后,试样失败时样品在低周期疲劳下的最大挠度为(12.32 mm)。在低周期疲劳(LCF)测试下,使用扫描电子显微镜(SEM)分析样品。硬度测试是在实验工作之前和之后进行的,以跟踪失败机制,其中包括逐渐的故障阶段。结果和讨论将详细说明材料硬度的明显恶化。实验结果表明,在复合材料的两种测试中,都与理论值和高级见解相吻合。
J � � 平面应变 J 积分断裂韧性,MPa m K 应力强度因子(模式 I),MPa m ��� K � 临界断裂韧性,MPa m ��� K � 弹性应力强度因子,MPa m ��� K � 弹性或弹性 — 塑性应力强度因子,MPa m ��� K � � 平面应变断裂韧性,MPa m ��� K � 基于 J 积分的等效 K,MPa m ��� K ��� 最大应力强度因子,MPa m ��� K ��� 最小应力强度因子,MPa m ��� K � 裂纹尖端张开应力强度因子,MPa m ��� K � 弹性 — 塑性应力强度因子,MPam ��� K � 弹性应力集中因子 K � 弹性 — 塑性应力集中因子 K � 弹性 — 塑性应变集中因子 N 载荷循环次数 N � 失效前的载荷循环次数 P �� 裂纹尖端张开载荷,N P ��� 最大施加载荷,N r 孔或缺口尖端半径,mm R 应力比 ( S ��� / S ��� ) S 施加应力,MPa S �� 裂纹尖端张开应力,MPa S ��� 最大施加应力,MPa S ��� 最小施加应力,MPa S �� TWIST 中的平均飞行应力,MPa S � � 一克飞行应力,MPa t � 沿 � 轮廓的牵引力,MPa ¹ � 裂纹扩展速率数据的转变 (i " 1 至 4) ¹ * 裂纹尖端周围的轮廓积分,MPa m u � 沿 � 轮廓的位移,mm » 裂纹尖端区域周围的材料体积,mm �