尽管人口不断增长,并且主要能源需求的增加,但为了抵消全球气候变化,对节能和能够维持的技术的需求是增加优先级。[1,2]由于它们的多样性和多功能性,过渡金属氧化物在能源相关的应用中起着核心作用[3-7],例如锂离子电池,超级电容器,照相和电含量和电载体或电元素或电代理(EC)设备。[8-17]为了稳定氧化物针对不希望的侧反应,可以使用薄的惰性保护层,如所示,例如,用于锂离子蝙蝠中的阴极材料。[18–21] EC设备具有在建筑业节能中发挥关键作用的潜力,该建筑业占欧洲能源征服的42%。[22,23]为此,电铬效应用于所谓的智能窗口。电色素是基于外部电压刺激的光吸收的可逆变化,这会导致(脱)对EC材料中电位的(例如H +,Li +或Na +)的(例如H +,Li +或Na +)的氧化还原反应。结果,材料中发生的着色或漂白过程。通常,EC材料可以分为两种不同类型。一种类型由所谓的阳极EC材料表示,其中离子的去分离会导致着色。其中包括Ni或IR的氧化物。[24]另一种类型是由阴极EC材料表示的。它们在离子插入时表现出着色。典型的代表是MOO 3或WO 3。氧化钨氧化物可以被视为最概述的EC材料,从那以后,它一直受到密集研究。[25–27]其阴极EC机制在离子插入时产生强烈的着色。因此,光态调节从不透明到深蓝色。根据
摘要:可植入的微电极阵列(MEA)可以记录皮质神经元的电活动,从而允许脑机界面的发展。然而,MES显示在慢性条件下的记录功能降低,促使新型MEA的发展可以改善长期性能。传统的平面,基于硅的装置和超薄的无定形碳化硅(A-SIC)测量植入雌性Sprague-Dawley大鼠的运动皮层中,并在植入后进行每周的麻醉记录。在两种设备类型的植入周期中,比较了1至500 Hz记录的光谱密度和频道。最初,A-SIC设备和标准测量值的带有可比性。然而,在植入后整个16周内,标准测量值显示出体力和功率频谱密度均持续下降,而A-SIC的测量表现出更加稳定的性能。从植入后第6周到研究结束时,标准和A-SIC MEA之间的带能量和光谱密度之间的差异在统计学上是显着的。这些结果支持使用超薄的A-SIC测量来发展慢性,可靠的脑机界面。
2在能源材料中表征运输现象的方法部,helmholtz-Zentrum柏林材料和Energie GmbH,Hahn-Meitner-Platz 1,14109柏林,德国柏林3席3席部薄膜设备的椅子技术,高效率和半教导机构技术研究所10587柏林,德国4部门能源材料的部门结构和动力学,赫尔姆霍尔茨 - 泽特鲁姆柏林材料和能源GMBH,Hahn-Meitner-Platz 1,14109柏林,德国5号,柏林5柏林5物理与天文学研究所柏林技术大学物理学,Hardenbergstraße,36,10623柏林,德国7 PVCOMB,Helmholtz-Zentrum柏林柏林材料和能量GmbH,Schwarzschildstraße3,12489 Berlin,
第一原理分子动力学用于描述无定形罪的原子结构,这是一种属于Si x n y家族的非认证计量化合物。通过冷却液体生产无定形状态,可以利用汽车 - 帕林内洛和出生的烟囱方法来获得具有较大原子迁移率的系统。在高温下,由于犯罪的特殊电子结构,表现出差距闭合效应,因此无法遵循汽车 - 荷兰方法,因为确实发生了涉及离子和电子自由度的非绝热效应。通过诉诸于Born-Oppenheimer方法来克服这种缺点,从而使在T = 2500 K处实现显着的离子差异。从这个高度不同的样本中,可以在室温下以10 k/ps的爆炸速率获得室温下的无定形状态。创建了四个不同的模型,并通过其大小和热周期差异。我们发现原子N的子网具有与化学计量材料Si 3 N 4相同的环境,因为N与Si大多是三倍。si原子也可以与Si 3 N 4中的四个N原子进行协调,但其中很大一部分形成了一个,两个,两个,三个甚至四个Si的同极键。我们的结果与垃圾中可用的以前的模型并不太相同,但是它们具有更高的统计准确性,并且更准确地将室温称为参考热力学条件,用于分析无定形状态的结构。
抽象的拓扑孤立场(例如磁性和极性天空)被设想为革新微电子。这些配置已在具有全局反转对称性破坏的固态材料中稳定,该材料将磁性材料转化为称为dzyaloshinskii – Moriya Interaction(DMI)的矢量自旋交换(DMI),以及旋转手学选择和同型溶质词。这项工作报告了3D手性旋转纹理的实验证据,例如螺旋旋转和具有不同手性和拓扑电荷的天空矩阵,在无定形的Fe – Ge厚膜中稳定。这些结果表明,具有随机DMI的结构和化学无序的材料可以类似于具有SIMI磁性特性,力矩和状态的反转对称破碎系统。无序的系统与具有全球反转对称性的系统通过其退化的旋转心脏破裂的区别,可以在RE Manence时形成各向同性和各向异性拓扑纹理,同时在材料合成,伏特,伏特,应变和菌株操纵方面具有更大的灵活性。
沸石是一种结晶多孔的铝硅酸盐,几十年来一直是化学工业的重要组成部分,对其结构进行微调 1–6 是开发优质功能材料的一种有前途的方法。Al 3+ 同晶取代沸石骨架的四面体位点 (T 位点) 可一对一地提供一个负电荷,该负电荷可作为单价阳离子的离子交换位点。沸石表面通过离子交换捕获二价阳离子有利于水净化 7,8 和生产独特的催化剂,其中沉积的二价金属阳离子可作为活性位点。9,10 为了实现这些目标,考虑到广为接受的 Loewenstein 规则,根据该规则,由于稳定性差,最近相邻的 Al 对 (即 Al–O–Al 序列) 无法形成,11 沸石骨架需要通过由第二位组成的离子交换位点来富集
旨在理解晶体如何成核,生长和组装成较大结构的结构域。[1,2]来自开普勒对1611年雪花对称的兴趣,随后史长期在1669年对岩石晶体的迷恋,到目前为止,直到现在,结晶已被认为是最重要的物理化学过程,并且已经证明了晶体结构之一,已证明凝结物质的物理特性。[3]通常,基于假设它们通过添加单一裂纹实体(单体单体单体)生长的假设来理解晶体习惯和特性的or-。[2-5]尽管这一假设是我们对晶体生长过程中原子过程的解释的核心,但在过去的二十年中,其总数受到了挑战。[6]即,来自合成,地质和生物逻辑系统的大量证据表明,结晶可以继续附着广泛的高阶实体(Partiles)。[7]这些包括簇状的离子或分子种类,液滴以及结晶和无定形颗粒。通过粒子附着(CPA)结晶(一种所谓的非经典结晶机制)已知形成形态学和纹理模式,这些模式在经典成核和生长模型的范围中无法解释。[8]这并不奇怪,因为CPA是一个多步骤过程,其中每个步骤在热力学和动力学之间都有自己的插入相互作用,从而定义了非常独特的晶体生长途径。[9-11]每个步骤都会受到多种物理化学的影响。举例来说,非晶颗粒附着的结晶涉及无定形颗粒的形成和稳定,它们的表达,最后转化为结晶相。最近,已针对研究和建模不同的CPA途径进行了重大努力。[12-14]对每个步骤的机械理解有可能生成一个综合工具包,以设计和合成从经典结晶模型的局限性的新型材料系统的设计和综合。但是,仍然存在许多知识差距。生物矿化组织被认为是通过在整个动物史的整个文档中的无定形前体结晶而形成的。[15]这些生物材料表现出各种层次结构化的矿物有机结构,可为生物体提供各种功能。[16]选择了无定形粒子附着的结晶
摘要:在开发高敏感,硬质和健壮的探测器2的过程中,出现了非常浅的无定形硼基结晶硅1异质结,用于低渗透性深度辐射,例如紫外线光光子,例如紫外线光子和低增强电子3(低于1 KEV)(1 KEV)。多年来,人们相信,通过N型晶体硅在N型晶体硅上的化学4蒸气沉积产生的连接是浅的P-N结,但5尽管实验结果无法提供这样的结论证据。直到最近,基于6个量子力学的建模才揭示了该新交界处的独特性质和形成机制7。在这里,我们回顾了理解8 A-B/C-SI界面的启动和历史(此后称为“硼 - 硅交界处”),以及它对9微电学行业的重要性,随后是科学上的新连接感。未来的10个发展和可能的研究方向也将讨论。11
硅是一种用于低温热能清除应用的丰富元素热电材料,通常患有相当低的热电效率。提高效率的一种可行解决方案是提高非硅硅(A-SI)的功率因数(PF),同时保持热导率足够低。在这项工作中,我们报告说,Pf> 1 m wm-1 K-2是可用于硼植入的p型P型A-SI膜,该膜分散,通过在温度≤600°C的温度下通过退火而实现的超细晶体。在550°C下退火可启动用嵌入A-SI基质中的亚纳米晶体结晶。所得的薄膜保持高电阻,因此产生了低的PF。在600°C下的退火大约使以双峰尺寸分布特征的特征降低了亚5-nm纳米晶体的密度,并因此减少了膜中无定形相的分数。因此,在室温下测得的PF> 1 m wm -1 k - 2急剧增强的电导率,因此Pf> 1 m wm -1 k -2。结果表明,在大型热电应用中,硅具有巨大的潜力,并基于硅热电话建立了通往高性能能量收集和冷却的途径。
图 1:非晶态 SiO 2 块体模型结构的对分布函数 (PDF)。图中用颜色对不同的对进行编码,Si-O 对用蓝线表示,Si-Si 用绿线表示,OO 用红线表示。y 轴表示归一化的对数,x 轴表示相应的距离(单位为 Å)。对于块体非晶态 SiO 2 模型结构和后续图中,Si 原子用黄色球体表示,O 原子用红色表示。