疟原虫通过裂殖生殖复制,即异步核分裂,然后是半同步分裂和胞质分裂。成功的分裂需要双层膜结构,即内膜复合体 (IMC)。在这里,我们证明 Pf FBXO1 (PF3D7_0619700) 对无性分裂和配子体成熟都至关重要。在弓形虫中,FBXO1 同源物 Tg FBXO1 对子细胞支架的发育和子细胞 IMC 的组成部分至关重要。我们证明 Pf FBXO1 在发育中的裂殖子顶端区域附近形成类似的 IMC 起始支架,并单侧定位在恶性疟原虫的配子体中。虽然 Pf FBXO1 最初定位于分裂寄生虫的顶端区域,但随着分裂的进展,它会显示出类似 IMC 的定位。类似地,Pf FBXO1 定位于配子体中的 IMC 区域。诱导敲除 Pf FBXO1 后,寄生虫会发生异常的分节和有丝分裂,产生无法存活的子代。缺乏 Pf FBXO1 的配子体形状异常,无法完全成熟。蛋白质组学分析确定 Pf SKP1 是 Pf BXO1 的稳定相互作用伙伴之一,而其他主要蛋白质包括多种 IMC 膜蛋白和膜蛋白。我们假设 Pf FBXO1 是恶性疟原虫有性和无性阶段中 IMC 生物合成、染色体维持、囊泡运输和泛素介导的蛋白质翻译调控所必需的。
羊栖菜是东亚地区一种具有商业价值的大型藻类,了解这种大型藻类的繁殖策略对于保护和恢复至关重要。在这里,我们使用种群遗传学方法来确定羊栖菜的繁殖策略。为此,我们执行了两种采样程序:随机采样和方形采样。对于随机采样,我们在相距 700 米的 A、B、C 和 D 地点以 > 1 米的间隔采集了 80 个样本。对于方形采样,我们在 B 和 D 两个地点使用由 10 厘米网格组成的 50 厘米 × 50 厘米方形采集了 207 个样本。使用 14 个(随机采样)或 13 个微卫星(方形采样)通过基因分型识别这些样本中的克隆同源体。对于通过随机采样获得的样本,仅检测到三对克隆对。对于通过样方取样获得的样本,每个样方包含 4– 7 个基株,平均大小为 23.2 ± 14.3 厘米(标准差),最大为 70.7 厘米。地点 B 的无性水平高于地点 D,这可能是由于暴露时间较长。地点 B 位于该物种潮间带的后缘。通过有性生殖的基因流动超过 65% 局限于样方内,而至少 10% 延伸至数米至数公里。综合起来,这些结果表明 S. fusiforme 在小范围内通过有性和无性传播其后代,在更大范围内通过有性传播,无性水平取决于暴露产生的压力。
我们展示了异源多倍体根结线虫Meloidogyne javanica的染色体级基因组组装。我们发现M . javanica基因组主要是异源多倍体,包含两个亚基因组A和B,最有可能起源于两个祖先亲本物种的杂交。使用全长非嵌合转录本、与参考数据库的比较和从头算预测技术对组装进行了注释,并使用祖先k聚体谱分析对亚基因组进行了分阶段。亚基因组B似乎显示染色体重叠群的分裂,虽然亚基因组之间存在大量同源性,但我们还确定了缺乏同源性的区域,这些区域可能在杂交之前或之后在祖先基因组中发生了分化。这种带注释和分阶段的基因组组装为了解这些全球重要植物病原体的起源和遗传学提供了重要资源。