© 2023 英国皇家化学学会。保留所有权利。本文仅供个人使用。任何其他用途均需事先获得版权所有者的许可。记录版本可在线获取,网址为 http://doi.org/10.1039/D3LC00398A。
Xin Liu 1,2 , Alei Dang 1,2 *, Tiehu Li 1,2 *, Yiting Sun 1,2 , Weibin Deng 1,2 , Tung-Chun Lee 3 , Yong Yang 1 ,
图 S1. 皮升级孵化器阵列的制作方案。孵化器图案由 2D CAD 软件(DraftSight,法国 Dassault Systèmes SE)设计。孵化器的设计直径为 30 µm。首先将光刻胶(ZPN 1150-90,日本 Zeon 公司)以 2500 rpm 的转速旋涂在玻璃基板上 30 秒。然后,使用标准光刻工艺对光刻胶膜进行图案化。光刻胶膜的图案化残留物(高度约为 10 µm 的微柱)被用作孵化器阵列的模板。接下来,采用旋涂技术(旋转速度:4000 rpm)将氟惰性溶剂(CT-solv.180,AGC Inc.,日本)中的非晶态氟聚合物(Cytop CTX-809SP2,AGC Inc.,日本)沉积在模板上。之后,在涂有氟聚合物的基板上沉积 PDMS 薄膜。薄膜结构有助于抑制基板因内部应力而表现出的自弯曲现象。这意味着通过采用薄膜结构可以保持 PDMS 培养箱阵列和玻璃皿之间的界面粘附力。在这方面,我们采用旋涂沉积工艺来制备基于 PDMS 的培养箱阵列。将含有固化剂的 PDMS(Sylgard 184,陶氏化学公司,美国)的低聚物溶液旋涂在模板上并固化。 PDMS 膜的最终厚度约为 20 µm。然后,将完成的 PDMS 膜从模板上剥离。使用 LEXT OLS4100 激光扫描显微镜(日本奥林巴斯)确认 PDMS 膜的图案。
晚期神经胶质瘤是最具侵略性的恶性脑肿瘤,生存时间较短。实时病理学有助于或图像指导的手术程序,消除肿瘤有望改善临床结果并延长患者的寿命。我们的工作集中在开发胶质瘤术中诊断和鉴定光学标记的快速和敏感测定方面,对于肿瘤和健康脑组织之间的分化必不可少的光学标志物。我们利用了与新鲜切除的大脑组织的神经胶质瘤的代谢相关的内源性流体团的荧光寿命成像(FLIM)。宏观分辨的宏观动物神经胶质瘤模型和患者胶质母细胞瘤的手术样本以及白质的宏观分辨荧光图像已被收集。应用了几种已建立的和新算法来识别肿瘤的成像标记。我们发现神经胶质瘤的荧光寿命参数为肿瘤和完整脑组织之间的分化提供了背景。所有三种大鼠肿瘤模型均表现出恶性组织和正常组织之间的实质性差异。同样,来自患者的肿瘤表现出与周围白质的统计学显着差异,而无需进行锻炼。虽然本文中提供的数据和分析是初步的,并且需要对大量样品进行进一步研究,但基于宏观FLIM的拟议方法具有临床瘤诊断和评估神经胶质瘤手术边缘的较高潜力。
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
最佳的深脑刺激(DBS)治疗治疗运动障碍通常依赖于术中运动测试来确定目标测定。但是,在当前的实践中,运动测试依赖于主观解释和电机信息的相关性。计算机视觉的最新进展可以提高评估准确性。我们描述了我们对基于深度学习的计算机视野的应用,以进行无标记的跟踪,以测量接受DBS手术的患者的运动行为,以治疗帕金森氏病。视频记录是在术中术中获得的(n = 5患者),作为精确植入DBS电极的护理标准的一部分。运动学数据。手动和自动化(精度为80.00%)的方法都用于从阈值衍生的运动学幻觉中提取运动学发作。通过对抛物线贴合拟合进行建模上肢挠度来压缩主动运动时期。半监督分类模型,支持向量机(SVM),对抛物线拟合拟合定义的参数进行了训练,可靠地预测运动类型。在所有情况下,跟踪均经过良好的校准(即,重新投影像素误差0.016-0.041;准确性> 95%)。SVM预测的分类表现出很高的精度(85.70%),包括两个常见的上肢运动,臂链拉力(92.30%)和手工夹(76.20%),并使用每位患者的剩余过程验证了精度。常规电机测试程序这些结果表明,对于评估DBS手术的最佳大脑目标至关重要的运动行为的成功捕获和分类。
追踪、检测和定量测量细胞和组织中纳米材料的能力推动了它们在生物医学中的日益广泛应用。开发无标记、高分辨率和高维方法,同时可视化多种细胞类型中的二维材料,从而洞察细胞功能和相互作用及其在组织中的空间定位,这对于将纳米材料转化为临床应用至关重要。过渡金属碳化物、氮化物和碳氮化物 (MXenes) [1,2] 是具有多种结构和成分的新兴二维材料。[3,4] 虽然研究最多的 MXene 是 Ti 3 C 2 ,但已报道了 30 多种化学计量成分和至少 20 种固溶体。这些二维薄片的表面覆盖着功能团,写为 T x 。这些基团主要由 O、OH 和 F 组成,因此具有亲水性,易分散于水和生理介质中。由于大多数 MXenes 已被证明具有生物相容性且无细胞毒性,因此它们被广泛用于
摘要 在美国田纳西州橡树岭,Rhodanobacter 是受高浓度硝酸盐和铀污染的蓄水层中的优势菌属。原位刺激反硝化已被提出作为修复硝酸盐和铀污染的潜在方法。在 Rhodanobacter 种中,据报道 Rhodanobacter denitri filcans 菌株具有反硝化能力并含有丰富的金属抗性基因。然而,由于这些菌株缺乏诱变系统,我们对低 pH 抗性和在污染环境中占主导地位的能力的潜在机制的理解仍然有限。在这里,我们在两株 R. denitri filcans 菌株中开发了一种无标记缺失系统。首先,我们优化了 10 株 Rhodanobacter 菌株的生长条件,测试了抗生素抗性,并确定了合适的转化参数。然后,我们在 R. denitri filans 菌株 FW104-R3 和 FW104-R5 中删除了编码尿嘧啶磷酸核糖基转移酶的 upp 基因。所得菌株被命名为 R3_ D upp 和 R5_ D upp,并用作宿主菌株,以 5-氟尿嘧啶 (5- FU) 抗性作为反选择标记进行诱变,以产生无标记缺失突变体。为了测试开发的方案,在 R3_ D upp 和 R5_ D upp 宿主菌株中敲除了编码硝酸盐还原酶的 narG 基因。正如预期的那样,narG 突变体无法在以硝酸盐为电子受体的缺氧培养基中生长。总体而言,这些结果表明,同框无标记删除系统在两种 R. denitri ficans 菌株中有效,这将有助于未来对这些菌株进行功能基因组研究,进一步了解 Rhodanobacter 种中存在的代谢和抗性机制。
摘要 在美国田纳西州橡树岭,Rhodanobacter 是受高浓度硝酸盐和铀污染的蓄水层中的优势菌属。原位刺激反硝化已被提出作为修复硝酸盐和铀污染的潜在方法。在 Rhodanobacter 种中,据报道 Rhodanobacter denitri filcans 菌株具有反硝化能力并含有丰富的金属抗性基因。然而,由于这些菌株缺乏诱变系统,我们对低 pH 抗性和在污染环境中占主导地位的能力的潜在机制的理解仍然有限。在这里,我们在两株 R. denitri filcans 菌株中开发了一种无标记缺失系统。首先,我们优化了 10 株 Rhodanobacter 菌株的生长条件,测试了抗生素抗性,并确定了合适的转化参数。然后,我们在 R. denitri filans 菌株 FW104-R3 和 FW104-R5 中删除了编码尿嘧啶磷酸核糖基转移酶的 upp 基因。所得菌株被命名为 R3_ D upp 和 R5_ D upp,并用作宿主菌株,以 5-氟尿嘧啶 (5- FU) 抗性作为反选择标记进行诱变,以产生无标记缺失突变体。为了测试开发的方案,在 R3_ D upp 和 R5_ D upp 宿主菌株中敲除了编码硝酸盐还原酶的 narG 基因。正如预期的那样,narG 突变体无法在以硝酸盐为电子受体的缺氧培养基中生长。总体而言,这些结果表明,同框无标记删除系统在两种 R. denitri ficans 菌株中有效,这将有助于未来对这些菌株进行功能基因组研究,进一步了解 Rhodanobacter 种中存在的代谢和抗性机制。
我们和其他人最近开发了一系列高通量 MS 筛选方法,用于定向蛋白质进化。13 – 16 然而,MS 的无标记优势尚未在设计新的酶活性中得到充分体现,这可能是因为非靶向 MS 筛选存在困难。特别是,它需要仔细标准化和优化样品制备、MS 采集和数据处理,这对于最大限度地减少实验噪音和发现新产品的微弱信号是必不可少的。另一方面,生物铸造厂提供了一种新兴的基础设施,通过机器人标准化和并行化来协助生物工程中的设计 – 构建 – 测试 – 学习 (DBTL) 循环。17 – 19 使用集成生物铸造厂,我们在此报告了一种重组文库的无标记 MS 筛选工作流程,以快速分离催化新产品形成的酶突变体。这种新的工作流程将我们之前的基于基质辅助激光解吸/电离飞行时间 (MALDI-ToF) MS 的筛选方法从琼脂菌落 16 扩展到行业标准微孔板中的液体培养物,以获得更好的均匀性。与菌落不同