两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
这几乎是之前所有技术都无法比拟的。高吸收系数允许用 300-500 纳米厚的薄膜制成高效的太阳能电池,而高电子和空穴迁移率以及缺乏深缺陷允许较长的电荷载流子扩散长度并导致光激发电子的有效收集。[1,2] 这些特性支撑了某些卤化物钙钛矿在光伏电池中的快速发展和高效率。虽然单结太阳能电池的效率已经非常惊人,[3] 但光伏钙钛矿在短期内的“杀手级”应用被认为是用宽带隙钙钛矿顶部电池增强商用晶体硅太阳能电池,以创建串联器件。硅钙钛矿串联器件的效率已经达到 29%,已经超过了硅技术本身的记录,清楚地展示了这一概念的前景。 [4] 此类串联器件可以实现高产量生产,一些研究预测其每瓦成本将低于现有技术。[5] 毫不奇怪,这项技术的商业化尝试已经在进行中。[6]
摘要:我们预测磁性铬基过渡金属二硫属化物 (TMD) 单层在其 Janus 形式 CrXTe(其中 X = S、Se)中具有非常大的自旋轨道扭矩 (SOT) 能力。Janus 结构固有的结构反演对称性破坏导致巨型 Rashba 分裂产生较大的 SOT 响应,相当于在非 Janus CrTe 2 中施加 ∼ 100 V nm −1 的横向电场所获得的响应,这完全超出了实验范围。通过对精心推导的 Wannier 紧束缚模型进行传输模拟,发现 Janus 系统表现出与最有效的二维材料相当的 SOT 性能,同时由于其平面内对称性降低,还允许无场垂直磁化切换。总之,我们的研究结果表明,磁性 Janus TMD 是超紧凑自感应 SOT 方案中终极 SOT-MRAM 设备的合适候选者。关键词:自旋轨道扭矩、过渡金属二硫属化物、二维材料、范德华铁磁体
4. 2020 年 10 月 23 日至 27 日,当地名称为“昆塔”的台风袭击南吕宋。菲律宾国家气候变化框架公约南吕宋运营和维护(“SLOM”)第 3 区业务范围内的一些省份受到了台风昆塔的影响。5. 菲律宾大气地球物理和天文服务管理局(PAGASA)确认了以下信息:台风“昆塔”于 2020 年 10 月 23 日进入菲律宾责任区(PAR),并于 2020 年 10 月 27 日离开;受影响的省份是 PAGASA 同期发出最高热带气旋警告信号的省份之一;台风“昆塔”记录到的最大风速为 150 公里/小时(km/hr),阵风为 185 公里/小时,影响了南吕宋地区。附件“A”附有 2021 年 1 月 13 日 PAGASA 信函的副本,附有 2020 年台风昆塔热带气旋摘要。 6. 由于台风“昆塔”的强度及其离开 PAR 后的尾端效应,SLOM 第 3 区的一些输电线路/结构被推倒和损坏,从而影响了 SLOM 的运营和受影响地区的输电服务。 超强台风“罗利” 7. 2020 年 10 月下旬至 2020 年 11 月初,当地名为“罗利”的超强台风也肆虐并影响了南吕宋地区。
Ministry of Health, Labour and Welfare Social Affairs Bureau, Business Division, War Dead Remains Appraisal Promotion Office *For families of Okinawan War deceased members who live in Okinawa Prefecture and are survivors, click here (email address) aa031704@pref.okinawa.lg.jp (fax address) 098-866-2758 (mail address) 1-2-2 Izumizaki, Naha City, Okinawa Prefecture 900-8570
新快评 TRE23-0018 昆西龟田教育研究生院 昆西龟田教育研究生院副教授 国际文凭课程学生学习困难研究 - 聚焦MYP“个人与社会”和DP“地理学” - 2023/8/1 2023/8/1 2024/1/31
能耗是任何电子设备最重要的方面之一,为了实现更好的可持续未来,需要进一步改进。这同样适用于商用光电探测器,它们使用巨大的外部偏置电压消耗大量能量。到目前为止,薄膜已广泛用于各种电磁辐射波段的光电探测。与基于纳米结构的设备相比,唯一阻碍它们发展的特性是性能较慢、响应度较低。然而,基于纳米结构的光电探测器的缺点是,由于设备制造步骤复杂且昂贵,它们缺乏大规模生产或商业化的可扩展性。解决这一限制的一个可行解决方案可能是使用混合结构,即 ZnO、(Al、Ga、In)N 和 GaAs 等高质量晶体材料与 MoS 2、石墨烯、WSe 2 和 SnS 2 组成的二维材料的组合。这将提供对带隙工程的广泛控制,可用于可扩展的模块化设备制造。这些方法有望开发出具有相对较高响应度和自供电光电探测器的光电探测器。当前的观点侧重于 III 族氮化物基光电探测器的进展及其使用混合 III 族氮化物/2D 界面的自供电、宽带和超快光电探测器的广阔前景。