摘要:随着机器人技术在安全监控,医疗保健,图像分析和其他高私人领域中的应用,机器人操作系统(ROS)中的视觉传感器数据面临着增强安全存储和传输的挑战。最近,有人提出,利用区块链的分布优势来提高ROS中数据的安全性。仍然,它具有诸如高潜伏期和大量资源消耗之类的局限性。为了解决这些问题,本文介绍了Privshieldros,这是一个由行星际文件系统(IPFS),区块链和Hybridabenc开发的扩展机器人操作系统,以增强ROS中视觉传感器数据的机密性和安全性。系统利用IPF的分散性质来增强数据可用性和鲁棒性,同时结合杂交式访问控制。此外,它通过使用区块链技术持续存储数据分配机制的安全性和机密性来确保数据分配机制的安全性和机密性。最后,通过三个实验验证了该系统的有效性。与最新的区块链扩展的ROS相比,PrivShieldros显示了关键指标的改进。本文已部分提交给IROS 2024。
凯瑟劳格斯特(瑞士)、海尔伦(荷兰),2024 年 3 月 19 日 营养、健康和美容领域的创新者帝斯曼-芬美意自豪地宣布与 Interstellar Lab 建立合作伙伴关系,后者是一家开发生物农业解决方案的生物技术初创公司。两家公司共同致力于推动植物成分生产的进步,这标志着帝斯曼-芬美意在拓展和探索农业技术中自然创新的边界以及开启嗅觉丰富度和可持续创新新维度的探索中取得了重大飞跃。此次合作旨在开创一项成分研究项目,重点关注环境条件对植物产量和表型评估的影响。利用 Interstellar Lab 先进的、人工智能控制的环境和生物技术专业知识,该合作伙伴关系旨在减少农业对气候的影响并保护关键生态系统的生物多样性。帝斯曼-芬美意全球天然创新主管 Xavier Brochet 表示:“我们对创新的承诺推动我们不断拓展天然成分的视野。通过探索尖端农业技术进步,我们正在重塑物种选择的格局,预测生产和采购的挑战,并优先考虑最高质量的成分。这种奉献精神确保我们为香水提供最纯净、最真实的天然提取物。” Interstellar Lab 专门开发和运营先进的生物农业平台,以加速植物生长并触发植物中特定分子的产生。他们的 AI 环境控制生物农场通过独特的数据驱动方法优化能源和资源消耗、捕获二氧化碳并显着改善成分的生命周期评估。“我们的生物农业平台代表了香水领域的一场革命,理解并解决了当前行业的需求,即提供可再生成分、负责任地采购和生产,以激发创作者并尊重环境”,Interstellar Lab 首席执行官兼创始人 Barbara Belvisi 表示。
1 Department of Physics and Astronomy, University of Turku, 20500 Turku, Finland e-mail: immanuel.c.jebaraj@gmail.com 2 LPC2E / CNRS, UMR 7328, 3A Avenue de la Recherche Scientifique, Orléans, France 3 Space Sciences Laboratory, University of California, Berkeley, CA, USA 4 The Blackett英国伦敦帝国学院物理学系实验室,5数学血浆天体物理学中心,数学系,Ku Leuven,Celestijnenlaan 200B,200B,3001比利时,比利时6皇后玛丽玛丽大学物理学和天文学学院,伦敦伦敦,伦敦,英国7号约翰斯·霍普金斯大学,美国霍普克斯大学,美国洛杉矶大学,美国洛雷尔(Lahosish)物理学,邮政信箱537,751 21瑞典9号乌普萨拉9号实验与应用物理研究所,基尔大学,德国基尔24118,德国基尔10号Heliophysics Science Science Division,NASA Goddard Space Flight Center,Greenbelt,Greenbelt,MD 20771
国防部 STARBASE 重点关注小学生,主要是五年级学生。目标是激励他们在继续教育的同时探索科学、技术、工程和数学(STEM)。该计划旨在为那些在 STEM 教育中历来代表性不足的学生提供服务。目标群体是居住在城市或农村的学生、社会经济条件较差、学业成绩较差或有残疾的学生。该计划鼓励学生。 设定目标并实现它。该项目通过探究式课程及其“动手实践、激发思维”的体验式活动吸引学生参与。他们学习牛顿定律和伯努利原理,了解太空的奇妙和物质的特性。孩子们使用计算机设计空间站、全地形车和潜水器,对科技着迷不已。数学贯穿整个课程,学生使用公制测量、估算、计算和几何来解决问题。强调团队合作,因为他们一起探索、解释、阐述和评估概念。军事志愿者通过带队参观和讲授在不同环境和职业中运用 STEM 的课程,将抽象的原理应用到现实世界的情况中。由于这些学院位于军队的不同军种,因此这种体验非常多样化。学生可以讨论如何扑灭化学火灾,了解如何运送伤员,探索 C-17 的驾驶舱,甚至潜艇的内部。学院与学区合作以支持他们的学习目标标准。一位参加国防部 STARBASE 项目的老师说:“STARBASE 教授科学和数学的方式让我们希望能有时间、资源和经验在普通课堂上学习。这是一种体验式、探索性的学习,与标准直接相关。”
• 在本实施例中,使用以 CO 2 为工作流体的文丘里泵将金属氧化物粉末(如铁锈、Fe 3 O 4 )吸入系统。 • 泵将铁锈粉末和 CO 2 推进系统的反应器,在那里铁锈中的铁与化合物中的氧分离。 • 铁以正离子的形式离开反应器;这些离子随后被电磁场加速,并通过永磁场从气流中转移。 • 然后铁离子被带负电的法拉第杯接收,在那里离子被中和并以纯铁金属的形式储存。 • 然后这种金属可以用作建筑或工业材料。 • 值得注意的是,该过程适用于任何离子键合的金属氧化物化合物,包括稀土元素。
星际距离非常遥远。电磁传播延迟与距离成正比,传播功率损耗与距离的平方成正比。这些对于星际航天器和探测器的通信来说都是严峻的挑战。那些发射此类任务的人可能希望在人的一生或成为太空科学家或工程师的职业生涯中取得科学成果。这导致这样的结论:此类飞行器或探测器必须以光速 c 的很大一部分行进。这反过来又需要大量能源来传递高动能,这使得质量预算较小的航天器或探测器更加珍贵。然而,总质量较小意味着分配给通信子系统的质量更少。这使得获得重大科学回报变得困难,而这在一定程度上是由科学数据的数量和可靠性决定的。在本教程白皮书中,我们讨论了在质量预算受限的情况下,围绕星际距离航天器或探测器通信下行链路设计的各种问题。
Svarog Project是一项学生主导的计划,旨在使用太阳能航行到达Heliopause [1]。帆设置为被动稳定,与以前的星际任务不同,不需要重力助攻,从而使深空探索更加可行和灵活。已经进行了以前的可行性研究,证明了任务的潜力并突出了研究重点。已经开发了一种高保真轨道模型,以证明轨迹的可行性和研究初始条件。目前,正在实施科学机器学习[2],以研究对系统属性的最佳初始条件,参数和轨迹的敏感性。初始研究表明,逃逸轨迹对于质量与面积比为12 g m -2是可行的。鉴于反复的近距离传递给太阳,任务的持续时间以及其对太阳事件的敏感性,在任务期间理解和建模太空环境至关重要。到目前为止,已经进行了使用GRAS [3]与数据驱动的太阳能电位模型相结合的航天器接收的辐射剂量的初步模拟。使用多粒子模型的内部代码的结构模拟已与商业软件包进行了比较,并与真空室测试配对以进行验证。在Ikaros团队研究和分析[4]之后,我们现在已经开发了非二维分析,该分析将使帆动力学缩放以减少所需的模拟数量,并能够在重力影响下对帆行为进行实验验证。机械和电子设计以及原型制作与研究的努力并行进行。这些已经使部署方法和通信体系结构进行了测试。正在与飞行经过证明的旋转方法并行研究电动机控制的繁荣部署[5]。如果这些技术成功,SVAROG系统可以作为测试新技术和研究机会的低成本推动力,对行星际任务的越来越多以及促进了深空探索。
2 ULA搜索参数:2021年仅可用选项;第四季度;东海岸发射,地球逃生轨道;有效载荷800公斤,短整流罩4米;签名服务选项;尚无其他自定义3 SpaceX尚未为地球逃生轨道提供乘车共享的选择,并且在离开地球轨道前往火星前往未来的任务之前,已经指出了在Leo上进行轨道加油的计划。搜索参数:Leo Orbit;拟议的2023年7月推出; 800公斤。4特斯拉敞篷跑车没有出版的重量。通过简单的搜索,未经验证的路缘重量为2,723磅,作为可能的参考点。,猎鹰重型示威的价格为1235.1公斤,价格为9000万美元。
摘要 数千年来,人类一直梦想着探索地球和太阳系以外的空间。本文讨论了如何利用当今或不远的将来的技术实现这种星际旅行,特别关注推进技术。首先,本文考虑了星际旅行背后的动机,即它将提供有关系外行星和星际介质的大量科学信息。然后,本文讨论了使用传统航天器进行星际旅行时面临的许多挑战,包括距离、时间和能量方面的挑战。然而,许多可能的替代推进技术解决了这些问题。本文讨论的三种技术是离子发动机、核脉冲推进和光帆。本文使用全面的 Pugh 矩阵分析了每种技术的适用性。本文得出结论,光帆是星际任务的最佳选择,因为它们具有高比冲和最终速度。利用光帆技术开发了在 50 年内飞越我们最近的恒星比邻星的基础任务概念。任务概念包括讨论推动光帆所需的激光器、探测器的大小和质量、机载仪器、任务时间表、通信、部署,最后是风险分析。本文最后介绍了创建此类任务所需的未来进步和研究。
小型卫星 (SmallSat) 技术的最新发展为太空任务的新范式打开了大门。NASA 最近的一份技术论文详细介绍了当前小型航天器技术的最新进展 [1]。小型卫星是传统卫星的较小尺寸。小型卫星对太空任务设计人员来说具有吸引力,因为它们可以使用商用现货组件,并且可以作为次要有效载荷共享,从而降低成本。次要有效载荷适配器对小型卫星的质量和体积有严格的要求,它们必须在发射前收起,并从适配器上释放后展开,例如 EELV 次要有效载荷适配器 (ESPA) [2]。目前,ESPA 平台有许多变体,其中一些配置为用作轨道转移飞行器。图 1 展示了标准 ESPA 变体。截至 2018 年,NASA 科学任务理事会 (SMD) 采取了一项积极的政策,将 ESPA 环集成到具有额外上升性能的 SMD 任务中,以便为次要有效载荷提供共享机会 [3]。