中国空间技术研究院 (中国) 643 26,135 30 空客 (欧洲) 611 13,954 67 波音 (美国) 430 14,624 88 Energiya (俄罗斯) 430 7,401 37 三菱电机 279 89,137 20 IHI 201 13,657 28 泰雷兹 (欧洲) 153 6,495 54 三菱重工 131 27,823 16 霍尼韦尔 (美国) 117 19,431 7 雷神 (美国) 105 5,383 3 斯奈克玛 (欧洲) 102 4,363 6 太空系统/劳拉 (美国) 58 168 12 Viasat (美国) 1 685 0 蓝色起源 (美国) 12 19 1 SpaceX(美国) 1 10 9 Rocket Lab(美国) 5 5 0 北京零度空间科技公司(中国) 2 24 0 Mojave Aerospace Ventures(美国) 2 2 0 PLD space(西班牙) 0 0 0 Reaction Engines(英国) 6 13 4 Relativity Space(美国) 0 2 0 Skyrora(英国) 0 0 0 Oneweb(美国) 11 29 0 Blacksky(美国) 0 0 0 Capella Space(美国) 0 0 0 Hawkeye360(美国) 0 6 0 Iceye(芬兰) 0 1 0 OHB System(德国) 1 8 20 Planet(美国) 5 27 2 Spire Global(美国) 6 22 0 ispace(日本) 7 13 1 Planetary Resources(美国) 4 4 1 Astroscale 12 12 0 D-Orbit (意大利) 4 4 0 NASA (美国) 91 1,924 959 日本宇宙航空研究开发机构 119 500 473 国防科技大学 (中国) 69 6,274 280 哈尔滨工业大学 (中国) 338 25,237 274 加州理工学院 (美国) 19 2,648 314 韩国航空宇宙研究院 (韩国) 436 2,739 72
名启博:プラマ・核融合学志92,396(2016)。[4 W.H.fietz and al。,IEEE Trans。苹果。超级。26,4800705(2016)。 [5]P。Bruzzone和Al。 ,ncle。 Fuance 58,103001(2018)。 l。米切尔和阿尔。 ,超级条件。 SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。26,4800705(2016)。[5]P。Bruzzone和Al。,ncle。Fuance 58,103001(2018)。l。米切尔和阿尔。,超级条件。SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。SCI。树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。树。34,103001(2021)。!t。安多和al。,技术完整。1,791(1998)。Lage F. Dahlgren和Al。,Eng已满。甲板。167,139(2006)。]H。H. Hashizume和Al。,Eng已满。甲板。63,449(2002)。[10! Y. Ogawa和Al。,J。填充完整的等离子体。79,643(2003)。<+11 Z. Yoshida和Al。,Ressing主题等离子体。1,8(2006)。[12 Y. Ogawa和Al。,Ressing主题等离子体。9,140,014(2014)。13 V. Corat和Al。,Eng已满。甲板。136,1597(2018)。14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。14 A. Sagara和Al。,Eng已满。甲板。89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。89,2114(2014)。15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。15 Y. Zhai和Al。,Eng已满。甲板。135,324(2018)。https://typeoneergy.com/ [20!Sorbon和Al。,Eng已满。甲板。100,378(2015)。[22 A A. Sykes和Al。,ncle。Fusion 58,016039(2018)。<3- y。歌曲和Al。 ,Eng已满。 甲板。 183,113247(2022)。 24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。歌曲和Al。,Eng已满。甲板。183,113247(2022)。24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。24-24 N. Yanagi和Al。,Ressing主题等离子体。9,140,013(2014)。,Proc。 14th Symp。 Fusion Technology,1727(1986)。,Proc。14th Symp。Fusion Technology,1727(1986)。
Samyogita Hardikar 5,6、Tirso Gonzalez Alam 10、Boris Bernhardt 7、Hao-Ting Wang 8、Will Strawson 2、Michael Milham 9、Ting Xu 9、Daniel Margulies 10、Giulia L. Poerio 2、Elizabeth Jefferies 11、Jeremy I. Skipper 12、Jeffery Wammes 1、Robert Leech 13 和 Jonathan Smallwood 1
目的:大约50%的结节性硬化症患者会出现婴儿痉挛,这是一种突然的发作癫痫综合征,与不良的神经系统结局有关。增加的块茎负担赋予了婴儿痉挛的风险升高,但尚不清楚某些块茎的位置是否比其他地方赋予更高的风险。在这里,我们测试块茎位置和连通性是否与婴儿痉挛有关。方法:我们从123名患有(n = 74)的儿童和没有(n = 49)的婴儿痉挛的儿童中分割了块茎,该裂隙是来自研究的观察群。我们使用VoxelWise病变症状图来测试痉挛与块茎位置之间的关联。然后,我们使用病变网络映射来测试痉挛与块茎位置之间的连通性之间的关联。最后,我们测试了与逻辑回归和交叉验证以及统计调解的识别关联的可区分性。结果:与婴儿痉挛相关的块茎位置是异质的,并且没有一个位置与痉挛显着相关。但是,> 95%与痉挛相关的块茎位置在功能上连接到Globi Pallidi和小脑vermis。与没有痉挛的患者中的块茎相比,这些连接是特定的。逻辑回归发现,Globus Pallidus连接性是痉挛的预测指标(优势比[OR] = 1.96,95%的置置间隔[CI] = 1.10 - 3.50,P = 0.02)(tuber = 1.65,95%CI = 0.90 - 3.0 –3.04,P = 0.04,P = 0.04,P = 0.04,P = 0.04,P = 0.02),cu = 0.90,cu = 0.73 (±0.1)在重复交叉验证期间。解释:块茎位置与双边环球pallidi之间的连通性与婴儿痉挛有关。我们的发现对痉挛性病理生理学有所了解,并可能识别有危险的患者。Ann Neurol 2021; 89:726 - 739
摘要 基于测量的量子计算 (MBQC) 范式始于高度纠缠的资源状态,通过自适应测量和校正在该状态上执行幺正操作以确保确定性。这与更常见的量子电路模型形成对比,在更常见的量子电路模型中,幺正操作在最终测量之前直接通过量子门实现。在这项工作中,我们将 MBQC 中的概念融入电路模型以创建一种混合模拟技术,使我们能够将任何量子电路拆分为经典高效可模拟的 Clifford 部分和由稳定器状态和局部(自适应)测量指令(即所谓的标准形式)组成的第二部分,该部分在量子计算机上执行。我们进一步使用图状态形式处理稳定器状态,从而显著减少某些应用的电路深度。我们表明,可以使用协议中的完全并行(即非自适应)测量来实现相互交换的运算符组。此外,我们还讨论了如何通过调整资源状态来同时测量相互交换的可观测量组,而不是像在电路模型中那样在测量之前执行昂贵的基础变换。最后,我们通过两个具有高度实际意义的例子证明了该技术的实用性——用于水分子基态能量估计的量子近似优化算法和变分量子特征求解器 (VQE)。对于 VQE,我们发现与标准电路模型相比,使用测量模式可以将深度减少 4 到 5 倍。同时,由于我们结合了同时测量,与在电路模型中单独测量泡利弦相比,我们的模式使我们可以将拍摄次数节省至少 3.5 倍。
摘要 价值敏感设计 (VSD) 是一种将价值观融入技术设计的成熟方法。它已应用于不同的技术,最近又应用于人工智能 (AI)。我们认为,AI 提出了许多特定于 VSD 的挑战,需要对 VSD 方法进行一些修改。机器学习 (ML) 尤其带来了两大挑战。首先,人类可能无法理解 AI 系统如何学习某些事物。这需要关注透明度、可解释性和可问责性等价值观。其次,ML 可能导致 AI 系统以“分离”其中嵌入的价值观的方式进行适应。为了解决这个问题,我们提出了一种三重修改的 VSD 方法:(1) 将一组已知的 VSD 原则 (AI4SG) 整合为设计规范,从中可以得出更具体的设计要求; (2) 区分设计所提倡和尊重的价值观,以确保结果不仅不会造成伤害,而且还会带来好处;(3) 扩展 VSD 流程以涵盖 AI 技术的整个生命周期,以监控意外的价值后果并根据需要进行重新设计。我们以 SARS-CoV-2 接触者追踪应用为例,说明了我们的 VSD for AI 方法。
Samyogita Hardikar 5,6、Tirso Gonzalez Alam 10、Boris Bernhardt 7、Hao-Ting Wang 8、Will Strawson 2、Michael Milham 9、Ting Xu 9、Daniel Margulies 10、Giulia L. Poerio 2、Elizabeth Jefferies 11、Jeremy I. Skipper 12、Jeffery Wammes 1、Robert Leech 13 和 Jonathan Smallwood 1
[研究背景] 在当今的超老龄化社会中,因疾病或受伤而患有骨骼和关节疾病的人数增加正在成为一个问题,对于植入体内进行治疗的生物材料的需求日益增加。金属材料具有强度与延展性优异的平衡性,且机械可靠性高,因此被广泛用作必须支撑大负荷的骨替代植入物。 植入物需要具有优异的耐磨性和耐腐蚀性。但由于它是一种高强度的金属材料,其力学性能一般与柔韧的活骨有显著差异,而且其特别高的杨氏模量是有问题的。当植入物的杨氏模量远高于骨骼时,大部分力会施加在植入物上而不是周围的骨骼上(这种现象称为应力屏蔽),这会导致骨质萎缩、骨矿物质密度降低和骨折风险增加。因此,近年来,需要开发具有与活骨相当的低杨氏模量的新型金属材料。 临床上最常用的生物医学金属材料是价格低廉的不锈钢SUS316L、耐磨性优良的CoCr合金、杨氏模量相对较低的Ti(钛)合金。然而,不锈钢和现有的钴铬合金的杨氏模量大约比活骨高10倍。虽然存在杨氏模量较低的Ti合金,但其杨氏模量高于活骨,且存在耐磨性低的问题。目前,很少有金属材料能具有与活体骨骼相当的杨氏模量,同时还具有优异的耐磨性和耐腐蚀性。特别是,低杨氏模量这一重要的机械性能通常与高耐磨性之间存在权衡关系,开发出一种兼具这些特性的新型合金一直很困难。 另一方面,在尖端医疗中使用的超弹性合金中,表现出约8%超弹性应变的NiTi(镍钛)合金的应用最为广泛。然而,NiTi合金中含有较高的Ni元素,人们担心其可能会引起过敏反应。为此,人们开发出了不含Ni的Ti基超弹性合金,但其超弹性应变仅为NiTi合金的一半左右。 【主要发现】