衍射现象 当波遇到一系列间距均匀的障碍物时就会发生衍射,这些障碍物 (1) 能够散射波,并且 (2) 其间距在大小上与波长相当。此外,衍射是两个或多个被障碍物散射的波之间建立特定相位关系的结果。考虑图 3.1 a W 中的波 1 和 2,它们具有相同的波长 (�) 并在点 O – O � 处同相。现在让我们假设这两个波都以某种方式散射,即它们穿过不同的路径。散射波之间的相位关系很重要,它将取决于路径长度的差异。当这个路径长度差是波长的整数倍时,就会出现一种可能性。如图 3.1 a W 所示,这些散射波(现在标记为 1 � 和 2 �)仍然同相。据说它们相互加强(或相互干扰);并且,当振幅相加时,就会产生图中右侧所示的波。这是衍射的一种表现,我们将衍射光束称为由大量相互加强的散射波组成的光束。散射波之间可能存在其他相位关系,但不会导致这种相互加强。另一个极端是图 3.1 b W 中所示的情况,其中散射后的路径长度差是半 w 的某个整数
引言 孪生是材料在受到外界刺激时最常见的结构转变之一,这些刺激包括机械载荷(1)、电子束或离子辐照(2、3)、激光冲击(4)和加热(5)。具有孪生结构的纳米晶体具有优异的性能,例如优异的机械强度(6)、改善的热稳定性(7)、高电导率(8)、显著的发光(9)和增强的催化活性(10)。了解纳米晶体中的孪生机制有助于对具有所需性能的纳米材料进行结构工程设计。传统观点认为,孪生是通过相邻原子平面上部分位错的逐层移动进行的(11)。外部机械载荷下的变形孪生涉及非常规机制,如部分位错的随机激活(12)、部分位错的同时激活(13)或洗牌机制(14)。由机械载荷以外的外部刺激引起的相变孪生尚不明确。人们认为纳米晶体的相变孪生通过传统的变形孪生机制进行(11),但这种说法缺乏直接证据。相变孪生需要外部能量来克服能垒(2-5)。外部能量的注入(15、16),例如在热退火和电子或离子辐照期间,为纳米晶体中孪生的形成提供了机会。这表明纳米晶体的孪生可能表现出由动力学控制的非常规路径。然而,由于部分位错/滑移的速度被认为在与声速一样快的时间尺度上发生(17),同时实现孪生激发和原子成像仍然是一项技术挑战。在这项工作中,以面心立方铅(Pb)纳米粒子为模型系统,我们利用透射电子显微镜(TEM)研究了单个纳米晶体中的转变孪生,
图 1. 首次记录的 Tamm 等离子体 (TP) 观测结果:GaAs/AlAs DBR 的透射和反射光谱,覆盖有厚度为 [(a) 和 (b)] d=30 nm 和 [(c) 和 (d)] d=50 nm 的金层,拍摄温度为 [(a) 和 (c)] 300 K 和 [(b) 和 (d)] 77 K。圆圈和实线分别对应测量的反射和透射光谱;虚线和点线显示计算出的反射和透射光谱。细实线表示未被金覆盖的 DBR 的反射光谱。Δ 是与 TP 相关的光谱特征的半峰全宽。经 AIP Publishing 许可,转载自 Sasin 等人的《Appl. Phys. Lett.》,2008 年,92,251112;https://doi.org/10.1063/1.29524866。
太赫兹 (THz) 波因其大带宽和丰富的光谱资源在成像、传感和通信方面表现出良好的应用前景,尤其在下一代无线通信中。用于操纵 THz 波的调制器和波导正在成为开发相关技术的关键部件,其中超材料分别在控制自由空间和片上传播方面表现出非凡的性能。在本综述中,我们将简要概述当前有源超器件和拓扑光子晶体的进展,以了解太赫兹自由空间调制器和片上波导的应用。在第一部分中,我们将通过将超材料与各种有源介质相结合来讨论有源太赫兹超器件的最新研究进展。在第二部分中,我们将介绍光子拓扑绝缘的基本原理,其中拓扑光子晶体是一个新兴的研究领域,将推动片上太赫兹通信的发展。我们设想,它们的结合将在更先进的太赫兹应用中找到巨大的潜力,例如可重构拓扑波导和拓扑保护的元设备。
Emiconductor纳米晶体(NCS)是纳米级半导体中最广泛的研究,现在我们有一个固体的理论基础,使我们能够理解其大多数电子,光学和传输特性。大约四十年前,在S. I. Vavilov State Optical Institute和A. F. Io Q. Io Q. Io Q. Io Q. Io Q. Io Q. Io Q.同时,但在一半的世界之外,新泽西州默里山的贝尔实验室的路易斯·布鲁斯(Louis Brus)正在研究液体胶体中的半导体颗粒。这两条研究线在地理上和铁幕上分离,最终导致了两个小组的独立发展NC的独立发展以及对大小依赖性光学特性的理论解释。1 - 15直到1984年,美国人才得知俄罗斯人的e orts,当BRUS阅读Ekimov Papers的翻译并写信给作者时。在研究人员可以在铁幕倒塌以及在俄罗斯引入格拉斯诺斯特和Perestroika之后开始进行密集的信息交流之前,还必须再过5年。尽管半导体玻璃和半导体胶体分散体之间存在明显的差异,但它显示了
摘要:调整宽带隙 β - Ga 2 O 3 的光学和电子特性对于充分利用该材料在电子、光学和光电子领域现有和新兴技术应用中的潜力至关重要。在本研究中,我们报告了 Ti 掺杂剂不溶性驱动的化学不均匀性对 Ga 2 O 3 多晶化合物的结构、形态、化学键合、电子结构和带隙红移特性的影响。采用传统的高温固相反应路线在可变的煅烧温度(1050 − 1250 ° C)下合成了 Ga 2 − 2 x Ti x O 3(GTO;0 ≤ x ≤ 0.20)化合物,烧结温度为 1350 ° C。GTO 样品的 X 射线衍射分析表明,仅在非常低的 Ti 掺杂浓度(<5 at. %)下才会形成单相化合物,而较高的 Ti 掺杂会导致形成复合材料,其中含有大量未溶解的 TiO 2 金红石相。然而,在烧结样品中,未溶解的金红石相的一部分转化为单斜 TiO 2。 Rietveld 对本征 Ga 2 O 3 和单相 Ti 掺杂化合物(x = 0.05)进行细化,证实样品在具有 C 2/m 空间群的单斜对称性中稳定存在。样品的表面形貌表明,本征 Ga 2 O 3 呈现棒状形貌,而 Ti 掺杂化合物呈现球形形貌。此外,在具有异常晶粒生长的掺杂化合物中,与本征 Ga 2 O 3 相比,可以注意到晶格孪生引起的条纹。Ga 2p 的高分辨率 X 射线光电子能谱分析显示,由于相邻离子的电子云之间的相互作用,与金属 Ga 相比发生了正向偏移。由于 Coster − Kronig 效应,Ti 2p 1/2 光谱显示出异常增宽。采用混合密度泛函理论的第一性原理计算表明,Ti 优先取代八面体 Ga 位点,并在 Ga 2 O 3 中表现为深层施主。从光吸收光谱可以看出,光学带隙发生了红移。Ga 2 O 3 带隙内的吸收归因于未溶解的 TiO 2 的夹杂,因为 TiO 2 在 Ga 2 O 3 带隙内具有 I 型排列。此外,还研究了 GTO 化合物的电催化行为。从电催化研究中可以明显看出,与本征 Ga 2 O 3 相比,掺杂化合物表现出明显的电催化活性。
~ 30%:高知名度出版物:Nature materials、Nature energy、Nature physics、Nature chemistry、PRL、Nature Communications、PRX、Advanced materials、Angewandte Chemie International Edition、JACS 等;
摘要:自发发射是最基本的平衡过程之一,在这种过程中,激发量子的发射极因量子的波动而放松到基态。在此过程中,发出一个可以与附近发射器相互作用并在它们之间建立量子相关的光子,例如,通过超级和亚表达效应。修改这些光子介导的相互作用的一种方法是通过将光子晶体放在它们附近来改变发射极的偶极辐射模式。最近的一个例子是通过使用具有线性等音轮廓和鞍点的带状结构的光子晶体来生成强大的方向散发模式 - 增强超级和次级效应的关键。但是,这些研究主要使用了过度简化的玩具模型,俯瞰了电磁场在实际材料中的复杂性,包括几何依赖性,发射器位置和极化等方面。我们的研究深入研究了这些定向发射模式与上述变量之间的相互作用,从而揭示了未开发的计算量量子量子光学现象。
已经检测到并检查了超导体中捕获通量的现象,并检查了半个多世纪。[1]在II型超导体中,它更为明显,无处不在,通过考虑Bean的临界状态模型[2,3]和涡旋的固定,给出了一般的物理图片。最近,对超导体中捕获通量的兴趣转移到了潜在的应用中(参见例如参考。 [4]),但是这种现象作为超导性的实验证明之一的重要性得到了很好的理解。 [5]确实将捕获的通量测量用作高压下H 3 s超导性的实验证实之一。 [6]显示[6],与传统的DC磁化测量相比,捕获的通量磁化数据几乎不受钻石的背景信号的影响参考。[4]),但是这种现象作为超导性的实验证明之一的重要性得到了很好的理解。[5]确实将捕获的通量测量用作高压下H 3 s超导性的实验证实之一。[6]显示[6],与传统的DC磁化测量相比,捕获的通量磁化数据几乎不受钻石的背景信号的影响