谐振转换器是电动汽车车载充电器和储能应用的理想选择。它能够有效控制能源、电池或高功率负载之间的功率流动。简单的 LLC 转换器可以扩展为双向 CLLLC 转换器,从而实现智能功率控制并提高器件效率 [1]。为了减少开关损耗并减小尺寸,必须使用高频开关器件,例如 GaN 晶体管。与硅或碳化硅等效晶体管相比,GaN 晶体管的 R DS(ON) 参数较低,因此传导损耗较小 [2]。零反向恢复、快速开关速度和较低的死区时间使 GaN 晶体管成为转换设计的理想选择 [3]。此类转换器的设计在 [4、5] 中进行了描述。除了由晶体管制成的 H 桥开关外,变压器对功能和功率效率也具有至关重要的影响。设计中必须考虑变压器的实际参数 - 即自谐振频率,因为它会影响转换器的最大工作频率 [6]。本文介绍了
摘要:石墨烯以其出色的电气,光学和机械性能而闻名,在下一代电子产品的领域中占据了中心地位。在本文中,我们对石墨烯场现场效应晶体管的综合制造过程进行了彻底的研究。重新确定了在确定设备性能时的关键角色石墨烯质量发挥作用,我们探索了许多技术和计量方法,以评估和确保石墨烯层的卓越质量。此外,我们深入研究了掺杂石墨烯的复杂细微差别,并检查了其对电子特性的影响。我们发现了这些掺杂剂对电荷载体浓度,带隙和整体设备性能的变革性影响。通过合并石墨烯场现场效应晶体管制造和分析的这些关键方面,本研究为旨在优化基于石墨烯电子设备的性能的研究人员和工程师提供了整体理解。
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
完整作者列表: Nasiruddin, Md;东北大学,化学 Waizumi, Hiroki;东北大学,化学系 Takaoka, Tsuyoshi;东北大学,先进材料多学科研究中心 Wang, Zhipeng;东北大学,化学 Sainoo, Yasuyuki;东北大学 - Katahira 校区,先进材料多学科研究中心 Mamun, Muhammad Shamim Al;库尔纳大学,化学 Ando, Atsushi;国家先进工业科学技术研究所,纳米电子研究所 FUKUYAMA, MAO;东北大学,先进材料多学科研究中心;Hibara, Akihide;东北大学,先进材料多学科研究中心 Komeda, Tadahiro;东北大学,先进材料多学科研究中心
摘要 高载流子迁移率和均匀的器件性能对于有机场效应晶体管 (OFET) 的器件和集成电路应用至关重要。然而,仍然需要实现高器件性能且批次间差异较小的策略。本文,我们报告了一种在 N,N'-双十三烷基苝-3,4,9,10-四羧酸二酰亚胺 (PTCDI-C 13 ) 模板上生长的 2,8-二氟-5,11-双(三乙基硅基乙炔基)蒽二噻吩 (dif-TES-ADT) 薄液晶膜,并通过原子力显微镜和偏振荧光显微镜进行了确认。具有大结晶域的液晶膜可进一步用作 OFET 的载流子传输通道。结果,我们实现了高性能 OFET,饱和载流子迁移率为 1.62 ± 0.26 cm 2 V −1 s −1
Dong-Ho Lee 1 , Hwan-Seok Jeong 1 , Yeong-Gil Kim 1 , Myeong-Ho Kim 2 , Kyoung Seok Son 2 , Jun Hyung Lim 2 , Sang-Hun Song 1,* , and Hyuck-In Kwon 1,* Abstract —In this study, a quantitative analysis was conducted on the effects of channel width on electrical performance degradation induced by self-heating stress (SHS) in顶门自我对准的共蓝淀粉锌氧化物(IGZO)薄膜晶体管(TFTS)。从SHS之前和之后获得的转移和电容 - 电压曲线,我们透露,TFT的电性能沿通道长度方向不均匀地降解,并且该降解的程度在具有较宽通道宽度的TFT中更为显着。在制成的Igzo TFT中,SHS下的阈值电压偏移(δVTh)主要归因于Igzo活性区域的浅供体状态的密度和受体样的深状态的增加,并且电子陷入了Sio X Gate Patectric中的快速和慢速陷阱。此外,我们使用基于状态δVTh Th Th的TFTs的TFTS的子仪密度来进行SHS诱导的δv Th起源于每个降解机制。尽管每种降解机制的每一个δv th都随着通道宽度的增加而增加,但增加了电子捕获到Sio X Gate中的慢陷阱
本文通过将模拟设置校准到垂直无结多栅极晶体管实验数据,介绍了先进的 β -Ga 2 O 3 TCAD 模拟参数和方法。通过仔细校准,确定了几个重要的 β -Ga 2 O 3 器件物理特性。研究了补偿掺杂和掺杂剂不完全电离的影响。使用了可以捕捉温度效应的电子飞利浦统一载流子迁移率 (PhuMob) 模型。我们还表明,界面陷阱可能对非理想亚阈值斜率 (SS) 不起作用,短沟道效应是 SS 退化的主要原因。我们还讨论了无结 Ga 2 O 3 晶体管的击穿机制,并表明其受到关断状态下沟道穿通的限制。校准后的模型与实验的电容-电压 (CV) 和电流-电压 (IV) 很好地匹配,可用于预测新型 β -Ga 2 O 3 器件的电性能。 © 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/ab7673]
摘要 — 超薄 In 2 O 3 和其他最近探索的低热预算超薄氧化物半导体已显示出用于后端 (BEOL) 兼容逻辑层和单片 3-D (M3-D) 集成的巨大前景。然而,这些富含缺陷的原子级薄通道的长期稳定性和可靠性尚未得到深入探索。在这里,我们通过室温正偏压不稳定性 (PBI) 和负偏压不稳定性 (NBI) 实验研究了具有 1.2 纳米厚原子层沉积 (ALD) 生长的 In 2 O 3 通道的晶体管的长期可靠性。观察到的行为很大程度上可以用陷阱中性能级 (TNL) 模型来解释。已经开发出一种减少参数漂移的方法,使用顺序封装并通过 O 2 等离子体处理进行 VT 工程。经过处理后,正、负栅极偏压应力下的长期 VT 偏移幅度均有所降低,而负偏压应力下的其他晶体管参数也趋于稳定。在所有情况下,亚阈值摆幅 (SS) 都不会随时间而变化,这表明应力引起的界面缺陷形成于导带下方很远的地方(如果有的话)。
图 2. ZnO-TFTs 阵列的电气、机械和光学特性。 (A) VD = 5V 时具有不同 W/L 比的 TFT 的传输曲线。 (B) W/L = 80/5 的 TFT 的输出特性,显示漏极电流 (ID) 与 VD 的关系,VG 从 -1 V 变化至 5 V(步长 = 1 V)。 (C) 一个阵列的十二个 ZnO-TFTs 电极的传输特性。红线为平均值。 (D) 来自同一阵列的十二个 ZnO-TFTs 电极的跨导。蓝线为平均值。 (E) ZnO-TFTs 电极在弯曲半径为 15 cm 的情况下经过 10 次弯曲循环后仍保持稳定的电气特性。 (F) ZnO-TFTs 阵列的透射光谱。插图是 3 × 4 ZnO-TFTs 阵列的光学图像,显示了其高透明度。白色框架标记电极阵列。比例尺:2 毫米。
根据2021年国际器件与系统路线图(IRDS),环栅晶体管(GAA)将从3nm技术节点开始取代FinFET,并应用于1nm技术节点。下一步,尺寸缩小的目标不仅是降低漏电,更重要的是降低功率,而包括三维异质集成在内的三维垂直架构将成为降低功耗的主流技术。要延续摩尔定律,不仅需要通过器件尺寸缩小来提高电路集成度,还需要降低功率和提高开关速度。堆叠式NSFET具有更好的静电完整性、短沟道免疫力,因此具有更好的功率缩放性能,是未来亚3nm技术节点的有希望的候选者[1−3]。