我们考虑使用语言模型(LMS)生成水晶材料的问题。关键步骤是将3D晶体结构转换为1D序列,以通过LMS处理。先前的研究使用了晶体学信息框架(CIF)文件流,该文件无法确保SE(3)和周期性不变性,并且可能不会导致给定晶体结构的唯一序列表示。在这里,我们提出了一种新的方法,即Mat2Seq,以应对这一挑战。mat2Seq将3D晶体结构转换为1D序列,并确保以单个唯一的序列表示相同晶体的不同数学描述,从而可以实现SE(3)和周期性不变性。实验结果表明,与先前的方法相比,MAT2SEQ具有MAT2SEQ在晶体结构产生中的表现有希望的。
本应用描述了光子晶体中的波传播,该波传播由彼此等距的GAAS支柱组成。支柱之间的距离防止某些波长的光传播到晶体结构中。取决于支柱之间的距离,在特定频率范围内的波反射而不是通过晶体传播。此频率范围称为光子带隙(参考1)。通过删除晶体结构中的一些GAAS支柱,您可以为乐队间隙内的频率创建指南。光可以沿着概述的指南几何形状传播。
摘要:光子时间晶体是现代光学物理学中一种新型的光子系统,导致具有新属性的设备。但是,到目前为止,由于时间晶体结构和拓扑特性之间的复杂关系,设计具有特定拓扑状态的光子时间晶体仍然是一个挑战。在这里,我们提出了一种基于学习的方法来应对这一挑战。在带有时间反演对称性的光子时间晶体中,每一个由动量间隙隔开的频带都可以具有非零量化的浆果相。我们表明,神经网络可以学习时间晶体结构和浆果相之间的关系,然后根据给定的浆果相特性确定光子时间晶体的晶体结构。我们的工作显示了一种将机器学习应用于时变光学系统的逆设计的新方法,并具有潜在的扩展到其他字段,例如随时间变化的声音设备。
apo脱靶蛋白晶体,该化合物的结晶被发现以适合浸泡的形式有助于结晶,但在晶体结构中不显示。还开发了和优化了浸泡溶液 - 从结晶沉淀物溶液开始。硫酸铵浓度降低,以避免相位分离并增加了PEG浓度。冷冻溶胶(分子尺寸)也用于识别溶解溶液,该溶液支持沉淀物溶液中的化合物溶解度。使用浸泡已经解决了30多个含有感兴趣化合物的晶体结构,其中大多数的分辨率大于2Å。
系统”1-5,2008(ICCCN 2008)。ISBN:978-1-4244-3594-4。 10。 “基于空间的光学通信系统” Mihir.hota,S.K。Tripathy,R.K.Dash和A.K. Panda,GITAM信息通信技术杂志,第2卷,2009年1月-JUL,PP-11-15。 11。 “不同光子应用的光子晶体结构” Mihir Hota,ISBN:978-1-4244-3594-4。10。“基于空间的光学通信系统” Mihir.hota,S.K。Tripathy,R.K.Dash和A.K. Panda,GITAM信息通信技术杂志,第2卷,2009年1月-JUL,PP-11-15。11。“不同光子应用的光子晶体结构” Mihir Hota,
本文中介绍的工作描述了如何获取有关蛋白质的结构信息,以及如何使用它来回答有关蛋白质功能,动态行为以及与其他蛋白质或配体的相互作用的科学问题。嘧啶降解,药物代谢酶β-尿肽酶(βUP)的催化功能取决于寡聚态之间的变化。在二聚体二聚体界面中的氨基酸H173和H307在活性位点取代,表明这些对于βup激活至关重要。对基材和产物类似物的抑制作用研究允许假设与F205相互作用的能力可以将激活因子与抑制剂区分开。使用低温电子显微镜确定了激活的较高低聚物状态的第一个结构,并确认封闭的入口环构象和二聚体二聚体接口在HSβUP和DMβUP之间保守。研究了表观遗传药物靶标与含有蛋白3(SMYD3)的MYND结构域与可能的抑制剂之间的相互作用。晶体结构证实了在SMYD3的活性位点,合理设计的靶向抑制剂的共价键。使用具有阻塞活性位点的生物传感器屏幕发现了一个新的变构结合位点。晶体结构揭示了新结合位点的位置,以及变构抑制剂的(s) - (r)对映异构体的结合模式。最后,采用了一种基于碎片的药物发现方法,并通过碎片屏幕上的命中进行共结晶和浸泡Smyd3。这导致四个晶体结构在酶的几个位置的碎片密度弱。动态乙酰胆碱结合蛋白(ACHBP)是Cys环型配体离子通道的同源物。从各种生物传感器筛选中进行命中,其中一些表明构象变化与ACHBP共结晶。确定了来自生物物理筛选的命中化合物的复合物中ACHBP的七个晶体结构。在几个晶体结构中检测到Cys-loop的小构象变化,与生物传感器筛选的结果一致。在这些研究中,我们探讨了研究与药物发现和优化相关的蛋白质功能和调节的新策略。
摘要。新的矿物Dacostaite,K(mg 2 al)[mg(H 2 O)6] 2(ASO 4)2 F 6·2H 2 O,已在Cetine di Cotorniano矿山,Chiusdino,Siena,Siena,Siena,Tuscany,Tuscany,意大利,意大利。它以薄,无色至白色的伪六角云母的尺寸而出现。条纹是白色的,光泽是丝般的。裂解在{001}上是完美的。基于(as + p)= 2个原子的Dacostaite的经验公式为(k 0。56 Ca 0。 04 Na 0。 03□0。 37)6 1。 00(Al 1。 54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。56 Ca 0。04 Na 0。 03□0。 37)6 1。 00(Al 1。 54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。04 Na 0。03□0。 37)6 1。 00(Al 1。 54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。03□0。37)6 1。00(Al 1。54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。54 mg 1。38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。38 CU 0。03 Zn 0。03)6 2。98 [mg(h 2 o)6] 2 [(AS 0。99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。99 P 0。01)o 4] 2 [f 4。46(OH)1。46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。46 O 0。08] 6 6。00·2H 2 O(Z = 2)。dacostaite是单斜的,具有C 2/ m的空间组,A = 12。474(5),b = 7。198(3),C = 13。724(6)Å,β= 99。518(13)°,V = 1215。3(8)Å3。使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。0927用于1022唯一的反射,带有f o>4σ(f o)。dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。其起源与氧化(Al,f) - 富裕的流体的活性相结合,在SB矿床的后期演变中,以前在Cetine di cotorniano矿山上被利用。
碘化物类似物的晶体结构表明:• 萘发色团彼此垂直 • 相邻萘的 pi 轨道之间的电子相互作用非常小