由Yonsei大学Keun Su Kim领导的研究团队,由韩国国家研究基金会(Leader Grant)资助,报告了第一次实验性发现了固体中原子级电子结晶石(于2024年10月出现在自然界中)。 通过角度分辨光发射光谱法,他们测量了从碱金属到黑色磷光表面掺杂的电子的能量摩孔关系。 虽然能量摩托车的关系必须在晶体系统中定期定期,但他们发现原子级电子结晶物期望的令人震惊的上周期关系。由Yonsei大学Keun Su Kim领导的研究团队,由韩国国家研究基金会(Leader Grant)资助,报告了第一次实验性发现了固体中原子级电子结晶石(于2024年10月出现在自然界中)。通过角度分辨光发射光谱法,他们测量了从碱金属到黑色磷光表面掺杂的电子的能量摩孔关系。虽然能量摩托车的关系必须在晶体系统中定期定期,但他们发现原子级电子结晶物期望的令人震惊的上周期关系。
摘要。本文重点介绍了新方法对FE80CR20合金粉的结晶石尺寸和热稳定性的影响。通常,在高温下施用时,球铣削样品和超声技术样品会产生不满意。此外,两种技术的组合尚未进行。因此,本研究旨在研究一种适当的技术,以产生最小的结晶石尺寸,以提高热稳定性。应用了新的机械合金(Mill)和超声技术(UT)的方法,以减少结晶石尺寸并提高热稳定性。新方法称为组合处理。这种情况允许增强Fe80cr20合金粉的热稳定性。在这项研究中,通过铣削时间为60小时,进行了机械合金工艺。然后,在3、3.5、4、4.5和5小时以35 kHz的频率进行超声波技术。从XRD分析中,发现较宽的峰表明较小的结晶石尺寸。它表明,当机械合金合金60小时(60 h),然后进行超声处理4.5小时(UT 4.5 h)时,组合处理(铣削和UT)将结晶石尺寸降低到2.171 nm。最小的结晶石尺寸可增强高达12.7 mg的热稳定性,在1100 0C温度运行期间通过TGA分析显示。组合处理是有效制造FE80CR20合金粉末的方法。关键字:Crystallite大小;热稳定性;机械合金;超声技术和
摘要。我们证明了由大气压化学蒸气沉积制造的硼掺杂的多晶 - 硅质(poly-si),以形成驱动的钝化接触。层有关其结晶石尺寸,电阻率和钝化特性的不同层层。从X射线衍射测量值中,定量得出的结论是,较高的射击峰温度会增加poly-SI的结晶石尺寸,最高为10 nm。这种结晶石尺寸的变化与电阻率成反比,这对于更高的发射温度而言大大降低。对于较薄的聚-SI层和较高的射击温度,发现较高的隐含开路电压(IV OC)和较低的饱和电流密度(J 0),这很可能是由于从SIN X:H层到界面氧化物的氢扩散时间差异。尽管没有观察到(p)poly-si的水泡,但在高点火温度下,sin x:h层的水泡> 900°C会损害薄层的钝化。实现了708 mV的最大IV OC和〜12 fa/cm 2的最小J 0。
热导率测量和声子平均自由路径的结果表明,有晶格障碍影响沿C轴的声子传输,这使人们回想起Hopg是由高度有序的石墨晶体组成的多晶材料。尽管有高度的排序,但是这些结晶石的C轴并不总是完全垂直于Hopg表面。通过马赛克扩散角度量化了这种未对准,该角度代表c轴的角度分散。本研究中使用的G1,G2和G3样品分别显示为0.4°,0.8°和3.5°的镶嵌角度。每个结晶石的标称侧向尺寸可以毫米大。为了解决此问题,在我们的TDTR测量过程中,我们将HOPG样品安装在倾斜阶段,以确保事件并反射激光束沿着相同的路径沿着相同的路径,保证在测得的结晶石表面上正常发生率。这样做,我们保证沿C轴严格将整个平面测量定向。我们强调,即使测量值略有离轴,小的镶嵌角度也对获得的λ//和λ⊥值的影响微不足道。要进一步确认我们的结果的一致性,我们
微化晶体中的结晶石和簇大小对于增强粉末宿主中激光作用至关重要,以获得固态随机激光器。结晶石从50至200 nm的范围内,小于1 µm的晶体簇在此应用中不受欢迎,因为这些特征会增加激光阈值[1-2]。形态在粉末发光上也起着重要作用。很少有作品将这种影响对激光作用[3]。最近,属于该家族的双钨的欧盟3+激活的纳米和微溶液晶体的发光研究是(WO 4)2,其中A是碱金属,并且在文献中广泛报道了稀土离子[4]。这些研究表明,这些欧盟掺杂的宿主非常有希望,对于由于强发光而与y 2 o 2 s相比,由于强劲的发光以及化学稳定性,用于W的红色发射材料,这是该设备中使用的通常的化合物。此外,对于固态随机激光器的双钨微化颗粒仍然没有研究。在这项工作中,有人建议通过改良的pechini sol -gel方法获取未掺杂和nd 3+掺杂的lila(WO 4)2的样品。分析了钙化时间和温度对形态,结晶石和簇大小的影响。样品以DTA,SEM,XRD和光散射为特征。
1) 坎顿附近的“蛇形”路堑,一种塑性折叠、弱叶理的大理岩,具有薄而持久的类似折叠的层,主要由微斜长石组成;2) 古弗内尔附近的岩岛路堑,暴露出格伦维尔大理岩中波茨坦砂岩的空腔填充物,一种粗面岩(?)侵入大理岩的杏仁状堤坝,片麻岩和片岩中的复杂角砾岩化,众多剪切带和黄铁矿矿化;3) 和 4) 布拉西角附近的海德“晶石”,将强调次要结构和主要结构之间的关系,并讨论晶石起源的有争议的问题;5) 海尔斯伯勒路堑,暴露出塑性变形的大理岩,其中含有显然来自堤坝的辉长岩块; 6) 石英黑云母 - 长石片麻岩中的 Poplar Hill 混合岩路堑,是该地区 Grenville 最广泛的变质沉积岩类型之一;7) Edwards 路堑,是著名的透辉石、方解石、金云母、钾长石和磷灰石矿物收集地。
使用自动燃烧的溶胶 - 凝胶方法合成镍铝(NIAL 2 O 4)纳米颗粒。制备的纳米颗粒分为四个部分,并在700、900、1100和1300℃时钙化,并进行了本研究。使用粉末X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDS),傅立叶变换和红外(FT-IR)光谱镜(FT-IR)光谱和UV-VIS光谱技术来表征吸收的纳米颗粒。X射线衍射模式证实了尖晶石结构和FD3M空间组。Scherrer公式用于计算结晶石尺寸,并在5.78至20.55 nm的范围内发现,而晶格参数的范围为8.039至8.342Å。在142.80至187.37 nm的范围内发现平均晶粒尺寸,而间间距的范围为2.100至2.479Å。FTIR光谱显示在400至3450 cm -1的范围内显示了六个吸收带,并确认了尖晶石结构。光条间隙(E G)随钙化温度降低,并在4.2129-4.3115EV范围内发现。关键字:镍铝制纳米颗粒; Sol-Gel自动燃烧法;钙化温度;结晶石尺寸;粒度;元素分析; IR和UV-VIS光谱PACS:75.50.GG,61.05.cp,68.37.hk,78.40.fy,33.20.ea,42.70.qs
摘要本文的主要重点围绕研究以特殊离子电导率为特征的生物聚合物电解质膜,这是钠离子电池实际实施的前提。这项研究使用溶液铸造方法成功制备了基于琼脂糖的生物聚合物电解质。将硝酸钠盐(Nano 3)添加到基于琼脂糖的生物聚合物电解质的各种重量百分比(0、10、20、30和40 wt。%)的影响。电化学阻抗光谱(EIS)适用于分析琼脂糖-Nano 3复合物的电导率和介电弛豫现象。基于琼脂糖的生物聚合物电解质的电导率随着盐浓度的增加而增加。离子电导率的增加是由于荷载体数量的增加和钠离子的迁移率。对于含有30 wt。%硝酸钠的琼脂糖3生物聚合物电解质,最高的室温电导率为3.44×10 -5sšCm -1。X射线衍射仪(XRD)光谱法被用于研究基于琼脂糖的生物聚合物电解质的结晶度。可以证实,与其他琼脂钠相比,硝酸钠的基于30 wt的琼脂糖生物聚合物是最无定形的,因为它具有最大最大的全宽度(FWHM)和最小的结晶石尺寸。这表明生物聚合物电解质的无定形性增强了Na +离子的迁移率,从而增加了样品的离子电导率。关键字:生物聚合物电解质,琼脂糖,硝酸钠,电导率,介电常数,结晶石尺寸
使用十二烷基硫酸钠(SDS)和高纯度分析级硝酸盐,通过化学共沉淀法在控制温度下合成磁钴铁素纳米颗粒(NP)。合成的材料的特征是研究的X射线衍射(XRD),扫描电子显微镜(SEM)和傅立叶变换红外辐射(FTIR)技术。样品在850 0 c烧结5H。X射线衍射分析证实了用公式AB 2 O 4的单相立方尖晶石结构的形成。在四面体(A位点)和八面体(a-o,b-o)上的晶格常数,X射线密度,结晶石大小,位置半径(R a,r b),键长(A-O,B-O)上的四面体(A位点)和八面体(b site)在样品中计算出来。晶格常数和结晶石尺寸分别为8.361 A 0和27 nm。FTIR光谱在四面体和八面体部位分别在400 cm -1和800 cm -1的范围内显示了两个强吸收带。SEM研究表明,平均晶粒尺寸为0.25 µm,几乎是球形形状的微结构钴铁氧体纳米粒子。关键字:化学合成,纳米颗粒,结晶石大小,XRD,FT-IR,SEM。1。简介:铁磁性材料含有一种称为铁氧体的氧化铁。铁素体具有一个立方尖晶石相,具有通用式AB 2 O 4,其中A是二价金属离子,例如Ni,Zn,Mn,Mn,Cu,Ca,Ca,Co,Mg,Mg和B是Fe,Sm,sm,sm,gd,la,ce,等等的三价金属离子。该结构中氧离子的排列提供了四面体(a)和八面体(b)位点。许多阳离子优先占据了其中一个位置。居住在8个四面体和16个八面体位置的阳离子在铁氧体的独特特征中具有重要作用。由于现代社会不断增长的需求,铁矿的微波特性现在需求很高。钴铁矿是微波工业中最常使用的材料,因为它们的高化学稳定性,机械品质,低成本和易于制造。他们的一般化学公式(AB 2 O 4)具有逆尖晶石结构,其一半占据了四面体A位点的铁离子,其余的以及钴离子,分布在八面体B点上。钴
摘要:用氧化石墨烯(RGO)进行了整整一系列的二氧化钛纳米复合材料,以溶剂热方法进行了制备。与RGO的TITANIA进行了修改会导致光催化特性。 在600°C的钙化温度下获得最高的光催化性能。 氧缺陷的共振线线宽,随着钙化温度的增加,线性降低,高达600 c,并伴随着养生酶相的平均结晶石大小的伴随。 氧缺陷的综合共振线强度强度在钙化温度下降低,并导致源自氧缺陷的共振线的强度大大增加,因为石墨烯的存在增强了钙的惰性气氛。 通过改变氧缺陷的量,磁性排序系统的发生显着影响光催化过程的性能。与RGO的TITANIA进行了修改会导致光催化特性。在600°C的钙化温度下获得最高的光催化性能。氧缺陷的共振线线宽,随着钙化温度的增加,线性降低,高达600 c,并伴随着养生酶相的平均结晶石大小的伴随。氧缺陷的综合共振线强度强度在钙化温度下降低,并导致源自氧缺陷的共振线的强度大大增加,因为石墨烯的存在增强了钙的惰性气氛。通过改变氧缺陷的量,磁性排序系统的发生显着影响光催化过程的性能。