人工智能 (AI) 已成为许多行业创新的主要力量,其中最显著的是能源管理 (Raman 等人,2024)。随着全球城市化进程的加快和气候变化的日益紧迫,优化城市和建筑的能源效率已变得尤为突出 (Esfandi 等人,2024)。利用尖端传感器和自动化技术,智能建筑中的人工智能驱动技术提供了一种可行的方法来减少能源使用、运营费用和环境影响 (Aguilar 等人,2021)。人工智能驱动创新的概念不仅限于单个建筑,还扩展到利用数字技术创建可持续和节能生态系统的智能城市区域的发展 (Szpilko 等人,2023)。这一日益增长的趋势凸显了了解人工智能和数字化转型如何彻底改变能源效率实践的重要性。
电网正越来越多地与可再生能源相结合,而可再生能源的产出本质上大多是波动的。负载需求也日益增加,这主要是由于人们对电动汽车和其他自动化设备的兴趣日益浓厚。能源管理系统有助于维持可用发电量和负载需求之间的平衡,从而优化能源使用。它还有助于减少峰值负荷、温室气体排放和运营成本。能源管理可以在不同的层面上进行,对于实现智能家居、智能建筑甚至智能电网至关重要。设计能源管理系统时考虑的不同目标是减少排放、能源成本、运营成本、峰值需求等。许多传统和混合的自然启发算法用于优化这些不同的目标。本文旨在概述用于优化家庭、建筑和微电网中能源管理系统的各种自然启发算法。
标题I - 效率第1001节。为学校的能源改造援助协调。第1001条的简化联邦能源效率计划和融资,以帮助提高效率并降低学校的能源成本。第1002节。在联邦建筑中使用能源和水效率措施。第1002条修改《国家能源保护政策法》(NECPA),要求能源部(DOE)向总统和国会报告每个机构的能源储蓄绩效合同,包括其投资价值;与上一年的实际节能相比,他们的最初保证节省了;来年签订新合同的计划;以及说明为什么未实施任何先前提交的合同计划的信息。 本节进一步修改了NECPA,以允许机构接受,保留,出售或转让能源节省,并将收益应用于本标题下的绩效合同。 它不包括在联邦水电设施执行的工作合同。 第1003节。 节能数据中心。 第1003节要求开发用于数据中心能源效率的度量,并要求能源部长,环境保护局(EPA)的管理员以及管理与预算办公室(OMB)的主管(OMB)来维护数据中心能源从业人员计划和联邦拥有和操作数据中心能源的开放数据计划。 第1004节。 节能和节能信息技术。 第1005节。 扩展产品系统折扣计划。第1002条修改《国家能源保护政策法》(NECPA),要求能源部(DOE)向总统和国会报告每个机构的能源储蓄绩效合同,包括其投资价值;与上一年的实际节能相比,他们的最初保证节省了;来年签订新合同的计划;以及说明为什么未实施任何先前提交的合同计划的信息。本节进一步修改了NECPA,以允许机构接受,保留,出售或转让能源节省,并将收益应用于本标题下的绩效合同。它不包括在联邦水电设施执行的工作合同。第1003节。节能数据中心。第1003节要求开发用于数据中心能源效率的度量,并要求能源部长,环境保护局(EPA)的管理员以及管理与预算办公室(OMB)的主管(OMB)来维护数据中心能源从业人员计划和联邦拥有和操作数据中心能源的开放数据计划。第1004节。节能和节能信息技术。第1005节。扩展产品系统折扣计划。第1004节要求OMB主管与每个联邦机构合作,以实施节能和节能信息技术。第1005节指示能源部长建立回扣计划,以鼓励更换效率低下的电动机。第1006节。节能的变压器回扣计划。第1006条指示能源部长建立回扣计划,以鼓励更换效率低下的变压器。第1007节。智能建筑加速度。第1007节指示能源部长建立一个计划,以在联邦建筑物中实施智能建筑技术,并证明智能建筑的成本和收益。本节要求能源部长作为更好的建筑挑战的一部分,以开发智能建筑加速器,以展示创新的政策和方法,以加速向智能建筑物的过渡。本节还建立了一个针对建筑物到网格集成的研发(R&D)计划。
产品和服务的数字化呈指数级增长,以及现实面貌的变化,为人工智能在日常生活中的应用提供了更大的空间。作为对斯蒂格勒对戈夫曼和贝尔纳迪尼幼稚化方法的批评的回应,人工智能出现在我们周围的现代世界的所有背景下,从简单的家用设备到3D打印机,从智能建筑到精准农业。意见领袖、自称未来的设计师或常见的后世界范式所创造的自动化习惯,充满了喜欢和不喜欢的清单,源自消费主义社会创伤后人类行为的伪现实。一方面,真正的人工智能进步在现实生活中把握了更多的价值、空间和兴趣,但它们也在电影这个幻想世界中蓬勃发展。本文旨在质疑科幻电影中的电影想象如何与现实相交,重点关注电影中的人工智能表现。
随着智能电网的发展,它需要增加分布式智能、优化和控制。模型预测控制 (MPC) 促进了智能电网应用的这些功能,即:微电网、智能建筑、辅助服务、工业驱动、电动汽车充电和分布式发电。其中,本文重点全面回顾了 MPC 在电网整合分布式能源 (DER) 电力电子接口中的应用。特别是,详细介绍了风能转换系统、太阳能光伏、燃料电池和储能系统的电力转换器的预测控制。还回顾了电网连接转换器的预测控制方法、基于人工智能的预测控制、未解决的问题和未来趋势。该研究强调了 MPC 在促进各种可持续电网连接 DER 的高性能、最佳功率提取和控制方面的潜力。此外,该研究为人工智能技术提供了详细的结构,这些技术有利于提高性能、简化部署并减少电力转换器预测控制的计算负担。
可持续能源系统研究小组寻求增加对日益复杂和动态能源系统的灵活性,效率,可持续性,可靠性和社会接受的方法,这些能源将主要由太阳能,风能或生物能源等可再生能源提供支持。它旨在弥合现有技术与未来全球优化的智能解决方案之间的差距。以这种方式,研究团队致力于为未来能源系统的挑战开发开创性的解决方案,从而使可再生能源,能源,能源存储,需求响应和电动移动性更大,包括能源社区,富有弹性的网络和富有智力的智能建筑,而无需忘记系统安全评估和模型/模型/数据互操作性。研究小组还将致力于为市场(本地和全球)中的新和现有挑战提供解决方案,包括开发数学模型来分析市场运营并提出新的市场设计。主要专业知识
Gujarat Anil Naik技术培训中心Anil Naik技术培训中心于2023年3月3日在古吉拉特邦Kharel组织“实施国家教育政策”会议。Rajeshri Tandel博士,地区教育官 -Navsari,Gayetri Oleti女士,行动负责人,Larsen Toubro公共慈善信托基金会,Santosh Saha先生,负责人 - 管理与企业家和专业技能委员会,Sohini Guha女士,Sohini Guha女士。会议肯定会有助于弥合差距,以有效地实施跨地区的国家教育政策,并有很大的支持。曼格什·米西(Mangesh Mithey),ESSCI,区域经理 - 韦斯特(West)是小组成员之一,并分享了他对与工业自动化,电动汽车,无人机技术,物联网,消费电子,智能建筑,半导体和制造商相关的未来派工作角色的看法。
摘要 - 本文的特征是针对检测前亮度的负组延迟(NGD)预测指标的原始应用。低通(LP)型NGD预测理论是基于时间预期考虑建立的。制定了预期预测性能功能的分析设计条件。通过使用坡道信号输入来研究和研究LP-NGD预测变量。通过具有不同的上升/下降时间和任意波形信号的梯形测试信号来验证LP-NGD数字预测器具有STM32®微控制器实现的有效性。此外,通过使用NLS-4942亮度光电师提供了实际应用的出色测试结果。LP-NGD预测演示器的设计和实现了不同的时间累积(-30 ms,-50 ms和-70 ms)。计算出的和实验的结果良好一致性显示出负偏斜的瞬态响应。NGD预测变量对于物体检测,汽车安全性和智能建筑舒适性控制系统,对工业应用可能有用。
突出显示。我们 R t Ad 突出显示。我们 R t Ad 然后阐明了 PEAS 技术面临的挑战 电力电子:历史记录,最新进展 阐明了 PEAS 技术面临的挑战 电力电子:历史记录,最新进展 当前面临的挑战。这些挑战包括:为智能建筑、智能工厂和智能基础设施供电,可再生能源集成和结构化微电网,电动汽车驱动和车辆电源系统,超快速和超高效充电器,家电 - “白色家电”,服务器和数据中心电源系统的无线电源传输,为物联网和无线传感器网络供电,存储和“电源转储”,以及 ATGC(所有与电网连接的事物),系统集成和动态控制。这 10 个领域为我们提出了需要克服的技术障碍,预期的进展将有助于确定电力电子的未来及其对整个电力和能源行业的影响。
Pratibha Kajle,Ms.Shalini Goad 理工硕士学者,助理教授 电气与电子工程系 电气与电子工程系 东方大学,印多尔 东方大学,印多尔 摘要 净零能耗建筑 (NZEB) 对于实现能源可持续性和减少建筑环境中的碳排放至关重要。本研究从三个关键方面探讨了 NZEB 的设计和实施:整合可再生能源系统、优化能源性能以及利用先进的能源模拟工具。研究了太阳能光伏系统、风能和储能技术的整合,以实现能源自给自足。分析了性能优化策略(例如增强隔热、高效 HVAC 系统和智能建筑控制)对降低能耗的影响。先进的能源模拟工具(包括 Energy Plus 和 TRNSYS)用于评估能源性能、检测效率低下和模拟运行场景。结果表明,结合可再生能源整合、性能优化和模拟驱动分析可显著提高建筑的效率和可持续性。该框架可指导建筑师、工程师和政策制定者在新建筑和改造项目中有效采用 NZEB 原则。关键词:净零能耗建筑 (NZEB)、能源可持续性、碳减排、可再生能源系统、太阳能光伏系统、风能、能源性能优化、隔热、高效 HVAC 系统、智能建筑控制、能源模拟工具、Energy Plus、TRNSYS、建筑改造、能源效率。I 简介由于能源需求不断增加和气候变化问题,全球能源部门面临着重大挑战。建筑物占全球能源消耗的近 40%,凸显了对节能和可持续解决方案的需求。净零能耗建筑 (NZEB) 通过平衡能源消耗和现场可再生能源发电成为应对这些挑战的一种有前途的方法。本文探讨了有效设计和实施 NZEB 所需的方法和工具。 1. 能源性能优化 - 能源性能优化侧重于通过各种策略最大限度地减少能源需求并提高整体效率:2. 先进的能源模拟工具 - 能源模拟工具在 NZEB 设计中发挥着关键作用,它通过分析
