第一单元:计算机图形学原理:简介、图形基元、点绘制、线、Bresenham 圆算法、椭圆、图形变换、坐标系统、视口、二维和三维变换、隐藏面消除、反射、阴影和字符生成。第二单元:CAD 工具:CAD 工具的定义、系统类型、CAD/CAM 系统评估标准、输入和输出设备的简要介绍。图形标准、CAD 的功能区域、建模和查看、软件文档、CAD 软件的有效使用。几何造型:曲线的数学表示类型、线框模型、线框实体、合成曲线的参数表示、三次样条、贝塞尔曲线、B 样条、有理曲线。第三单元:曲面造型:曲面的数学表示、曲面模型、曲面实体、曲面表示、曲面的参数表示、平面、规则曲面、旋转曲面、制表圆柱。单元 IV:合成曲面的参数表示:Hermite 双三次曲面、Bezier 曲面、B 样条曲面、COONs 曲面、混合曲面、雕塑曲面、曲面操作 — 显示、分割、修剪、相交、变换(2D 和 3D)。单元 V:3D 几何建模:实体建模、实体表示、边界表示(13-rep)、构造实体几何(CSG)。CAD/CAM 交换:数据交换格式评估、IGES 数据表示和结构、STEP 架构、实施、ACIS 和 DXF。设计应用:机械公差、质量特性计算、有限元建模和分析以及机械装配。协同工程:协同设计、原理、方法、工具、设计系统。教科书:
摘要。详细分析了使用平面和曲面光子微机电系统镜进行高斯光束的自由空间耦合。分析了理论背景和非理想效应,例如有限的微镜范围、球面微镜曲率不对称、轴未对准和微镜表面不规则。使用推导的公式从理论和实验上研究和比较平面(一维)、圆柱形(二维)和球面(三维)微镜的行为。分析重点关注曲面微镜曲率半径与入射光束瑞利范围相当的尺寸范围,也对应于参考光斑尺寸。考虑到可能的非理想性,推导出基于传输矩阵的场和功率耦合系数,用于一般微光学系统,其中考虑了微系统切向和矢状平面中的不同矩阵参数。结果以归一化量的形式呈现,因此研究结果具有普遍性,可应用于不同情况。此外,还制造了形状可控的硅微镜,并用于实验分析可见光和近红外波长的耦合效率。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.3.034001]
第一单元:CAD 工具:CAD 工具的定义、图形标准、图形软件:图形软件的要求、CAD 的功能领域、CAD 软件的有效使用。几何造型基础:几何 3D 造型的要求、几何模型、几何构造方法、所需造型设施。第二单元:几何造型:线框实体的分类、曲线表示方法、解析曲线的参数表示:直线、圆、圆弧、圆锥曲线、合成曲线的参数表示:Hermite 三次曲线、Bezier 曲线、B-Spleen 曲线、NURBS、曲线操作。第三单元:曲面造型:曲面实体的分类、曲面表示方法、解析曲面的参数表示:平面、直纹曲面、旋转曲面、表格圆柱、合成曲线的参数表示:Hermite 三次曲面、Bezier 曲面、B-Sp 线曲面、混合曲面、曲面操作。第四单元:实体造型:几何和拓扑、边界表示、欧拉-庞加莱公式、欧拉算子、构造实体几何:CSG 基元、布尔算子、CSG 表达式、内部、外部、闭包、扫描:线性和非线性、实体操作、特征造型。第五单元:变换:2-D 和 3-D 变换:平移、缩放、旋转、反射、连接、齐次坐标、透视投影、正交各向异性投影、等距投影、隐藏表面消除、阴影、渲染。评估标准:CAD 软件评估标准,数据交换格式:GKS、IGES、PHIGS、CGM、STEP 尺寸和公差:线性、角度、角度尺寸、最大实体条件 (MMC)、最小实体条件 (LMC)、无论特征尺寸如何 (RFS)。教科书:
植物学和微生物学系,科学学院,Sohag University,Sohag,82524,埃及。*电子邮件:gem_gad@yahoo.com收到:2024年11月16日,修订:2024年12月2日,接受,接受:2025年12月19日在线发布:2025年2月7日,2025年2月7日摘要:曲线摘要(sumcc 22003)(sumcc 22003)是一种与药物的内生真菌相比,是一种与药物的叶子相比,该植物植物caltroproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproprop- h.--埃及。根据形态和系统发育分析确定了真菌。研究了C. spicifera对生物合成银纳米颗粒(AGNP)的能力。使用UV-VIS光谱,XRD测量,DLS,ZETA电位分析,FTIR和HR-TEM分析来表征生物合成的AGNP。形成的AGNP稳定,分散且球形晶体,平均直径为38.41 nm,ZETA电位为-6.35 mV。FTIR分析证实AGNP用蛋白质封盖。生物合成优化研究表明,1 mM Agno3,5 g生物量重量,pH 10.5和60°C的反应温度是AGNPS生物合成的最佳条件。agnps在不同浓度上对革兰氏阴性细菌,革兰氏阳性细菌和酵母菌的测试物种发挥了显着的抗菌活性,表明它们作为广谱抗菌剂的潜力。大肠杆菌对AGNP(50 µg)的敏感性最高,抑制区直径为23.7±0.3 mm,MIC 4.2±0.1 µg。agnps(50 µg)的抑制区为16.7±0.1 mm,MIC对于白色念珠菌的抑制区为5.7±0.3。关键词:钙髓质Procera,细胞外生物合成,表征,优化,抗菌活性
研究和审查过程简介研究的性质和目标、研究主题、文献综述、问题的提出、研究设计、抽样技术、数据收集、数据的统计和敏感性分析、结果解释和报告撰写。实验设计简介基本原理、实验中的误差分析、实验设计的分类、一、2k 和 3k 个因素实验的设计和分析、完全随机和随机完全区组设计田口设计和方差分析田口方法、借助正交表进行实验设计、参数选择和田口稳健参数设计、方差分析、主效应和相互作用、二因素和三因素相互作用和方差分析、噪声因素、控制因素的容差。信噪比的形成和分析。响应曲面法和其他过程优化方法响应曲面方法简介、二阶响应曲面分析、响应曲面设计中的阻塞、稳健设计的响应曲面方法、问题解决。统计软件 SPSS、MS Excel、Mini Tab 或 MATLAB 等统计软件在数据分析中的应用 研究伦理 剽窃工具、可重复性和责任制 推荐书籍: 1. Autar K Kaw、Egwu E Kalu 和 Duc Nguyen 著的《数值方法及其应用》 2. Douglas C. Montgomery 著的《实验设计与分析》,John Wiley & Sons(亚洲)
TGD 导致了 [46, 56] 中讨论的两种关于物理学的观点。在第一种观点 [14, 13, 17] 中,物理学被视为时空几何,在 H = M 4 × CP 2 中被确定为 4 曲面,在更抽象的层面上,物理学是“经典世界的世界”(WCW)的几何,由基本作用原理的优选极值(PE)空间组成,将玻尔轨道的类似物定义为具有奇点的极小曲面。在第二种观点 [29] 中,物理学被简化为数论概念,类似于动量空间的 M 8 中的 4 曲面定义了基本对象。类似于动量位置对偶的 M 8 − H 对偶 [42, 43] 将这两种观点联系起来。 M 8 c (复数 M 8 ) 中的 4 曲面,可解释为复数八元数,它们必须是结合的,即它们的法向空间是四元的。对于给定的时空区域,它们由实参数多项式 P 的根延至 M 8 c 中的多项式来确定。这些根定义了 M 4 c ⊂ M 8 c 的质量壳层集合,通过全息术,它们定义了 H 的 4 维表面。H 级的作用原理由 TGD 的扭转升力决定,是 4-DK¨ahler 作用与体积项 (宇宙常数) 之和。它不是完全确定性的,H 中作为 PE 的时空曲面与玻尔轨道类似,可视为具有框架的肥皂膜的类似物,对应于确定性失效的奇点。除了由 P 的根确定的光骨架本时 a = an 对应的双曲 3 曲面外,框架还提供额外的全息数据。框架包括部分子 2 曲面的类光轨道和连接它们的弦世界面。新颖之处在于,与零能量本体论 (ZEO) [33] 一致的是,类空间数据对于全息术来说是不够的,还需要类时间数据,而弦世界面对于编织和 TQC 来说是绝对必要的。
• 了解在物理对象逆向工程背景下数据采集的基本原理。(KB3、ET2、ET3) • 比较和利用不同数据采集技术的功能来生成物理对象的数字模型。(D3、D4、LL2) • 了解不同类型的 CAD 数据格式之间的结构差异。(KB4、ET1、ET2) • 选择并使用适当的格式进行 CAD 数据交换操作。(ET1、ET2、LL2) • 了解内部 CAD 表示的理论基础。(KB1、KB4) • 开发对自由曲面/复杂曲面/雕塑曲面进行操作和建模的策略和技能。(ET1、ET2) • 选择并实施 3D 扫描模型的增材制造工艺。(ET2、D3、D4) 授课时间 每周 3 个讲座小时、2 个实验室/辅导小时,半个课程
摘要 大型 3D 曲面电子产品是微电子行业的一种趋势,因为它们具有与复杂表面共存的独特能力,同时保留了 2D 平面集成电路技术的电子功能。然而,这些曲面电子产品对制造工艺提出了巨大挑战。在这里,我们提出了一种可重构、无掩模、保形制造策略,采用类似机器人的系统,称为机器人化“转移和喷射”打印,以在复杂表面上组装各种电子设备。这种新方法是一项突破性的进步,具有在复杂表面上集成刚性芯片、柔性电子产品和保形电路的独特能力。至关重要的是,包括转移印刷、喷墨打印和等离子处理在内的每个过程都是无掩模、数字化和可编程的。机器人化技术,包括测量、表面重建和定位以及路径编程,突破了 2D 平面微加工在几何形状和尺寸方面的根本限制。转移打印首先用激光从供体基板上剥离刚性芯片或柔性电子元件,然后通过灵巧的机器人手掌将其转移到曲面上。然后,机器人电流体动力打印直接在曲面上书写亚微米结构。它们的排列组合实现了多功能保形微加工。最后,利用机器人混合打印成功地在球形表面上制造了保形加热器和天线,在有翼模型上制造了柔性智能传感皮肤,其中组装了曲面电路、柔性电容和压电传感器阵列以及刚性数模转换芯片。机器人混合打印是一种创新的打印技术,可实现 3D 曲面电子产品的增材、非接触和数字化微加工。
在本文中,我们介绍了一种新的几何深度学习模型 CorticalFlow,该模型通过给定一张三维图像来学习将参考模板变形为目标对象。为了保留模板网格的拓扑属性,我们通过一组微分同胚变换来训练我们的模型。这种新的流常微分方程 (ODE) 框架实现受益于小型 GPU 内存占用,可以生成具有数十万个顶点的曲面。为了减少由其离散分辨率引入的拓扑误差,我们推导出可改善预测三角网格流形性的数值条件。为了展示 CorticalFlow 的实用性,我们展示了它在大脑皮层表面重建这一具有挑战性的任务中的表现。与目前最先进的技术相比,CorticalFlow 可以生成更优质的曲面,同时将计算时间从 9 分半钟缩短到 1 秒。更重要的是,CorticalFlow 强制生成解剖学上合理的曲面;它的缺失一直是限制此类表面重建方法临床意义的主要障碍。
研究文章 12. 与 Y. Minsky 和 S. Taylor 一起研究同步通用圆 25 页。arXiv:2412.06986。 11. 与 Y. Minsky 和 S. Taylor 一起研究横向曲面和伪 Anosov 流,已提交 2024 年。48 页。arXiv:2406.17717。 10. 与 CC Tsang 一起研究端周期映射、分裂序列和分支曲面,几何与拓扑,即将出版。144 页。arXiv:2304.14481 9. 与 Y. Minsky 和 S. Taylor 一起研究通过伪 Anosov 流实现的端周期映射,已提交 2023 年。50 页。arXiv:2304.10620。 8. 与 Y. Minsky 和 S. Taylor 一起研究流动、增长率和转向多项式,遍历理论和动力系统,第 43 卷,号。 9,第 3026-3107 页。2023. 7. 与 Y. Minsky 和 S. Taylor 合作的用于转向三角剖分的多项式不变量欧洲数学学会杂志第 6 卷,第 2 期,第 731-788 页。2024. 6. 转向三角剖分和 Thurston 范数:与同位素的同源性数学进展,第 396 卷,论文 108102,2022 年,53 页。5. 稳定环和几乎横向曲面群、几何和动力学第 17 卷,第 1 期,第 35-75 页。2023. 4. 来自转向三角剖分的绷紧分支曲面代数和几何拓扑18 1089-1114,2018。3. On symplectic capacities of toric domains with M. McMillan and E. Tsukerman Involve Vol. 8, pp. 665-676, 2015。2. Knotprojections with a single multi-crossing with Adams, Crawford, DeMeo, Lin, Montee, Park, Venkatesh, and Yhee Journal of Knot Theory and its Ramifications Vol. 24 (3), 2015。