简介 从历史上看,加州水务委员会在加州水资源开发中发挥了重要作用。如今,委员会正在转变为一个更现代化的机构,继续管理可追溯到上世纪中叶的法定职责,同时管理水存储投资计划并提供公共论坛,就水政策、规划和管理问题为州决策者提供建议。 该委员会的战略计划着眼于未来几年,并设定了目标和目的,以推进委员会的长期工作和新兴工作,而此时加州必须适应更热、更干燥的气候和更频繁的极端水文事件。该计划还采取了一种新方法来吸引代表性不足的政党,并将公平考虑纳入其工作中。
过多的热量提高了地球的平均温度,其最直接的效果是天气炎热以及整体上较长的炎热天气(Nasem,2016年),这两者都可以增加与热有关的损伤或死亡的风险(Sarofim等,2016)。过量的热量也会导致更多的干旱,因为更热的空气会导致水蒸发增加,进而增加了其他灾害的风险,例如野火(Nasem,2016年)。除了与火灾相关的发病率和死亡率的直接风险外,野火还带来了间接的风险,因为野火烟雾可以比大火的最初地点更远,烟雾含有危险的颗粒,这些危险颗粒可以增加疾病的风险和短期和长期曝光的疾病风险(EPA,2023; Zhang et epa; Zhang et e223; epa; Zhang et a e a e e epa; Zhang et e223; Zhang等。
• 反射率:光伏 (PV) 模块使用非反射玻璃,旨在吸收而不是反射照射到面板上的光线。光伏模块的反射性通常低于窗户,许多大型机场的太阳能设施如果面板反射性太强,就无法安装。许可所需的众多研究之一包括闪烁和眩光研究,并将评估对邻居的视觉影响。• 吸热:我们有一个问题,即这个项目是否会导致其周围环境升温。简短的回答是不会。事实上,裸露的泥土或大多数其他自然表面总体上都会比太阳能项目产生更热的环境。• 社区利益:该项目将通过销售税、财产税支付、社区贡献计划以及当地就业、采购和服务为当地经济做出重大贡献。例如,一个 400 兆瓦的项目预计在运营的第一年贡献 300 万至 400 万美元,惠及学校、本顿港、道路、县服务等。
甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
22次干旱在加利福尼亚州经历了从2012年至2016年经历记录的最严重的干旱后不到五年。气候建模表明,干旱将变得更加严重和频繁。此外,2022年2月发表的研究表明,北美西南部目前正在过去1200年中遇到最糟糕的“大型摩根大草原”。这项研究估计(基于气候模型),气候变化占该巨大严重程度的42%,而当前的大型摩根大放异彩不是“大型摩根大草原”,而是气候变化(Williams,Cook和Smerdon,2022年)。回应2020-22的干旱以及对气候变化将进一步挑战加利福尼亚水管理方式的方式的认识,Newsom Administment在2022年8月发布了一项战略(“加利福尼亚的供水策略,适应更热,更干燥的未来”)。该策略旨在解决由于气候变化,到2040年,预计供水减少(600万英亩至900万英亩水)。
能源分解通过一个测量整个家庭用电需求的仪表来估计每个电器的用电量。与侵入式负荷监测相比,NILM(非侵入式负荷监测)成本低、易于部署且灵活。在本文中,我们提出了一种新方法,即 IMG-NILM,该方法利用卷积神经网络 (CNN) 分解以图像表示的电力数据。IMG-NILM 不是采用传统的将电力数据作为时间序列处理的方法,而是将时间序列转换为热图,将较高的电力读数描绘为“更热”的颜色。然后,CNN 使用图像表示从聚合数据中检测电器的特征。IMG-NILM 稳健而灵活,在各种类型的电器上均具有一致的性能;包括单一状态和多种状态。它在单个房屋的 UK-Dale 数据集上实现了高达 93% 的测试准确率,其中存在大量电器。在从不同房屋收集电力数据的更具挑战性的环境中,IMG-NILM 也达到了 85% 的非常好的平均准确率。
空调所需的电力在全球范围内飙升。吸收冷却器代表使用热量而不是电力的经典蒸气压缩系统的替代方法。但是,到目前为止,由可再生地热热提供的吸收冷水机几乎没有受到关注。本文使用热的地热流体(通常在80 - 110°C的范围内)引入系统,以通过单效吸收冷水机和家用热水(DHW)通过热交换器产生冷却。它考虑了位于法国加勒比岛马提尼克岛的一家酒店。每个子系统的电消耗已得到充分估计。本文的独创性是两次:i)该系统是在考虑动态条件的TRNSYS软件中建模的。考虑了几种情况,具体取决于地热温度,质量流量,远程偏差和需求大小。研究的系统似乎比经典的蒸气压缩冷水机和DHW的锅炉的组合更昂贵。但是,它可以显着降低所提供能量的CO 2含量,尤其是在一个从化石燃料中产生大多数电力的岛上。地热井的接近度以及使吸收发生器(此处用于DHW生产)的温水的使用似乎是系统相关性的关键因素,以及更热的地热液(例如,110°C而不是80°C)。
氢气越来越多地被吹捧为电力储存和平衡电网可再生能源发电的理想技术。现实情况比这更微妙:氢气和 CAES 相辅相成,各自发挥着不同的作用,是最佳解决方案。当每种技术(而不仅仅是这两种)在其最佳运行位置使用时,能源转型将是最经济实惠、最可靠和最有弹性的,而不是被视为“一刀切”或“灵丹妙药”解决方案。天然气管网氢气是天然气管网中甲烷的绝佳替代品。在许多发达国家,近年来,天然气管网已经进行了改造,使其与氢气兼容,例如聚氨酯管道和更好的密封件可以容纳较小的分子并避免脆化。这不是一个简单的替代:相同的能量输出需要超过 ⅓ 的气体量;设备需要改造,因为它的火焰特性不同。这些特性中最重要的是它燃烧得更热;其他差异是火焰的形状和最热部分的位置。因此,不应通过稳步增加氢气在天然气混合物中的比例来推广氢气电网:这将需要多次转换设备,成本非常高,而且破坏性很强。最好是一次性将局部区域转换为 100% 氢气,然后在氢气经济高效地可用时扩展到其他(通常是邻近)区域。
●虽然森林大火自然发生了干扰,这会导致许多森林生态系统的健康和更新(加拿大森林部长委员会2019年),但随着气候的温暖,火灾越来越热,更狂野,造成了更大的破坏。●整个加拿大野火活动越来越频繁(Hanes等人。2018)。2023年燃烧的地区是历史平均水平的六倍以上(加拿大森林森林消防中心2024年)。●气候变化在2023年加拿大东部极端火灾状况的可能性增加了一倍以上(世界天气归因2023)。●过热的气候正在使加拿大夏天更热,更风,降雨量更不稳定,包括一些地区的夏季降雨(Bush and Lemmen 2012; Gifford et al。2022)。●火灾季节开始早些时候,持续更长的时间,并且很难包含(加拿大的气候地图集n.d。;加拿大自然资源2024b;加拿大自然资源2022)。僵尸大火甚至在整个冬季开始闷烧(Shingler 2024)。●随着气候温暖,照明罢工变得更加频繁(McKabe 2023)。2023年在加拿大燃烧的地区的百分之九十三是来自闪电点燃的火灾。人口统计只有7%(Jain等人2024)。●升高的野火风险意味着,无论出于何种原因,开火,传播并更容易失控。