30肯定选择了Cho-M Cell Lines™,每种都会选择不同类型的重组蛋白。可行的细胞浓度(VCC)和细胞活力,以跟踪培养物的生长性能。然后,使用拉曼光谱法分析了每种培养的样品。与VI细胞BLU参考方法不同,与自动化液体处理系统相连的拉曼光谱设置消除了对消耗品(试剂)的需求,并允许进行全自动的采样和数据收集分析。
目的:应用于癌症治疗的纳米技术是纳米医学研究的一个越来越多的研究领域,具有磁性纳米粒子介导的抗癌药物输送系统,提供了最小可能的副作用。到此,使用无标记的共聚焦拉曼光谱研究了商业钴金属纳米颗粒的结构和化学性质。材料和方法:通过XRD和TEM研究了钴纳米颗粒的晶体结构和形态。用鱿鱼和PPM研究了磁性特性。共聚焦拉曼显微镜具有高空间分辨率和组成灵敏度。它是一种无标记的工具,可在细胞内追踪纳米颗粒,并研究无涂层的钴金属纳米颗粒与癌细胞之间的相互作用。通过MTT测定法评估了钴纳米颗粒对人类细胞的毒性。结果:MCF7和HCT116癌细胞和DPSC间充质干细胞的超paragnetic CO金属纳米颗粒摄取通过共聚焦拉曼显微镜研究。拉曼纳米颗粒特征还可以准确检测细胞内的纳米颗粒而无需标记。观察到钴纳米颗粒的快速吸收,然后观察到快速凋亡。通过针对人类胚胎肾脏(HEK)细胞的MTT测定法评估其低细胞毒性,使它们成为有望发展目标疗法的候选者。结论:无标签的共聚焦拉曼光谱可以准确地将CO金属纳米颗粒定位在细胞环境中。此外,在20MW的激光照射下,波长为532nm,可以使局部加热导致细胞内钴金属纳米颗粒的燃烧,从而为癌症光疗法开放新的途径。研究了无表面活性剂钴金属纳米颗粒与癌细胞之间的相互作用。癌细胞中易于的内吞作用表明,这些纳米颗粒在产生其凋亡方面具有潜力。这项初步研究证明了钴纳米材料在纳米医学中应用的可行性和相关性,例如光疗,高温或干细胞递送。关键字:拉曼光谱,钴纳米颗粒,癌细胞,干细胞,细胞摄取,凋亡,无标签工具
摘要。我们使用低成本,紧凑的拉曼光谱仪报告快速鉴定单个细菌。我们证明了60 s的程序足以在600至3300 cm-1的范围内获取全面的拉曼光谱。这次包括将小细菌聚集体的定位,单个个体的比对以及自发的拉曼散射信号收集。小细菌聚集体的快速定位,通常由小于十二个个体组成,是通过在24 mm 2的大型视野上进行镜头成像来实现的。无镜头图像还允许单个细菌与探测束的精确比对,而无需标准显微镜。在532 nm处的34兆瓦连续激光器的拉曼散射光被喂入定制光谱仪(原型龙卷风光谱系统)。由于该光谱仪的高光吞吐量,可接受的积分时间低至10 s。我们在七个细菌物种上总共记录了1200个光谱。使用此数据库和优化的预处理,获得了约90%的分类速率。我们的拉曼光谱仪的速度和敏感性为高通量和无损的实时细菌鉴定测定法铺平了道路。这种紧凑和低成本的技术可以使生物医学,临床诊断和环境应用受益。©2014光学仪器工程师协会(SPIE)[doi:10.1117/1.jbo.19.11.111610]
我们展示了单层和少层石墨烯薄片的拉曼光谱测量结果。我们使用扫描共焦方法收集具有空间分辨率的光谱数据,这样我们就可以直接将拉曼图像与扫描力显微照片进行比较。单层石墨烯可以通过 D' 线的宽度与双层和少层石墨烯区分开来:单层石墨烯的单个峰分裂为双层的不同峰。这些发现是使用基于电子结构和声子色散的从头计算的双共振拉曼模型来解释的。我们研究了 D 线强度,发现薄片内没有缺陷。源自边缘的有限 D 线响应可以归因于缺陷或平移对称性的破坏。
摘要。拉曼光谱对分子水平上物质化学成分的高灵敏度使其成为通过分析血清诊断慢性心力衰竭(CHF)的宝贵工具。拉曼光谱法提供了一种无标签,快速检测方法,与机器学习(ML)技术结合使用时具有高度特异性和准确的结果。但是,必须仔细选择适当的ML算法,以分析高维光谱数据,以获得可靠和正确的结果,这些结果主要基于所研究的样品,标本或结构的真实化学特征以及并非所有算法都可以提供高性能。在这项研究中,我们比较了四种方法:(1)多变量曲线分辨率与逻辑回归(MCR-LR)结合使用,(2)与线性内核支持向量机(MCR-SVM),(3)在潜在结构上的投影与歧视分析(PLS-DA)的投射(4)投影(4) (PLS-SVM)。这些方法适用于CHF患者的193例拉曼光谱,对照病例的78例。我们发现,PLS-DA和PLS-SVM证明了最佳的ROC AUC,平均值为0.950(0.91-0.97,0.95 CI)和0.99(0.94 - 1.00,0.95 CI),而MCR-LR和MCR-SVM仅实现了0.50(0.46- 0.53-0.95 CI),以及0.53,0.95 CI),并实现CI),分别。©2024生物医学光子学与工程杂志。
该文章的此版本已被接受以供出版,在同行评审(适用)之后(如果适用),并且受Springer Nature的AM使用条款的约束,但不是记录的版本,并且不反映后接受后的改进或任何更正。记录版本可在线获得:https://doi.org/10.1038/s41564-024-01656-3
摘要:催化是现代社会必不可少的基石,支持了超过80%的制成品并驱动了90%以上工业化学过程的生产。随着对更有效和可持续过程的需求增长,需要更好的催化剂。了解催化剂的工作原理是关键,在过去的50年中,表面增强的拉曼光谱(SER)已成为必不可少的。在1974年发现,SERS已演变为一个成熟而有力的分析工具,转变了我们在学科跨学科中检测到分子的方式。在催化中,SERS已使人们能够洞悉动态表面现象,从而在非常高的空间和时间分辨率下促进了催化剂结构的监测,吸附物相互作用和反应动力学。本评论探讨了SER在催化和能量转化领域的成就以及未来的潜力,从而强调了其在推进这些关键研究领域中的作用。关键字:表面增强的拉曼散射,SER,电催化,光催化,热催化,等离子体催化,能量转换,能量储存
然而,碳材料的复杂性和多变性对满足现代工业的需求提出了重大挑战,尤其是对锂离子电池 (LiB) 的需求。先进的分析方法,例如从 2 峰到 4-5 峰拟合的过渡,对于捕捉新兴碳材料的详细特性是必不可少的。粒度分布和形态对电极性能有至关重要的影响,但传统方法往往无法准确表征这些特性,导致质量不一致。现有的质量控制流程劳动密集且效率低下,降低了生产率和可靠性。由于碳材料的异质性,确保精确测量非常困难,需要准确的基线校正、信噪比管理和可靠的峰值拟合,所有这些都需要专业知识。
正在进行的研究探索了新的腈基官能化分子,例如疏螺旋体素 5 和具有腈基的二氢喹海松酸衍生物。6 氘在延长药物在体内的半衰期方面起着至关重要的作用,从而改善了暴露情况并减少了有毒代谢物,从而提高了疗效和安全性。7,8 例如 FDA 批准的第一个氘代药物,2017 年的氘代丁苯那嗪,9 和 2022 年的德克拉伐替尼。10 炔烃通常存在于药物分子中,可促进良好的相容性,11 例如依法韦仑、炔诺孕酮、炔雌醇等。随着这些药物的蓬勃发展,全面了解它们的生物和生理机制对于制定个性化的治疗方法至关重要。药代动力学研究旨在监测体内的药物浓度,反映药物在整个暴露过程中身体与药物的相互作用,包括药物的吸附、分布、代谢和消除/
zqtian@xmu.edu.cn表面增强的拉曼光谱(SERS)的领域是在1970年代中期开始的,并于1990年代中期恢复。在1974年,依赖于电化学潜力的第一表面拉曼光谱是从Fleischmann,Hendra和McQuillan [1]的吡啶分子中观察到的。这一成就源于他们在拉曼光谱法应用于电化学方面的开创性工作。实际上,这是第一个SERS测量,尽管当时还没有被认为。van Duyne和Jeanmaire很快就仔细地设计了一种测量表面增强因子的程序,因此发现增强因子的阶段为10 5 -10 6。在旷日持久的审查过程之后,这大概是由于审稿人不愿相信表面增强的非正统概念,他们的论文最终于1977年发表[2]。独立地,克雷顿和阿尔布雷希特在同年发表了有关SERS的论文[3]。在1978年,Moskovits首先解释了表面等离子体对粗糙银电极对SERS增强的影响,并预测在覆盖有吸附剂的Ag和Cu胶体可能会发生相同的效果[4]。Creighton等人使用AG和AU胶体对该预测进行了实验验证,并且该效果被Van Duyne在1979年被列为表面增强的拉曼散射(SERS)[5]。在过去的50年中,SERS经过了曲折的途径,发展为强大的诊断技术[5,6]。我们可以从1970年代发现SER的伟大先驱和故事中学到什么?物理。我的演讲将主要通过讨论以下问题来提供历史但前瞻性的主题。为什么要挑战教科书以开设新的科学领域?1990年代,纳米科学(纳米驱动的SER)的sers研究是如何提高的?Will AI会在SERS的研究和应用中迎来一个新时代,并突破2020年代[7]的SERS(AI-DRIENS SERS)的开发瓶颈?参考文献[1] Fleischmann M,Hendra PJ,McQuillan AJ,吡啶的拉曼光谱吸附在银电极,化学。Lett。 (1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。 化学。 (1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。 am。 化学。 Soc。 (1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。 物理。 (1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。 nat。 修订版 mater。 (2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。 化学。 社区。 (2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。 al。 Soc。Lett。(1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。化学。(1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。am。化学。Soc。(1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。物理。(1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。nat。修订版mater。(2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。化学。社区。(2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。al。Soc。,半个世纪的表面增强拉曼光谱:回顾和透视,化学。Rev。 (2024);要出版。Rev。(2024);要出版。