简介:蓝色起源致力于建设一条通往太空的道路,以便下一代能够利用无限的太空资源并改善地球上的生活。借助蓝色月球,该团队定义并开发了最先进的月球着陆器架构,以提供可靠、低成本的发射和商业月球运输工具,从而实现繁荣的地月和月球表面生态系统。蓝色月球 Mark-1 (MK1) 是蓝色起源的单次发射、消耗性货运着陆器,旨在将有效载荷和数公吨的货物送入月球轨道并降落到月球表面,提供安全、可靠且经济实惠的月球环境访问。这种庞大的容量与强大的电力、热能和数据服务以及精确着陆到任何月球目的地的能力相结合,使 MK1 成为科学、技术、探索和商业的市场领先平台。
下一代货物运输航天器 HTV-X 的开发正稳步推进,朝着首艘发射的目标迈进。目前,详细设计已经完成,航天器制造已经开始。设计 HTV-X 的关键点之一是满足多样化的货物需求。三菱重工有限公司 (MHI) 通过详细设计进行了设计发明,以满足航天器结构形式的约束,然后进行了逐步的原型测试,并确认可以满足这些要求。HTV-X 将用于向国际空间站 (ISS) 运送补给,同时还考虑使用该航天器的高级版本为美国主要推动的月球轨道载人基地 (Gateway) 的补给做出贡献。本报告介绍了 HTV-X 的开发现状、详细设计的结果以及与该航天器高级版本相关的未来计划的努力。| 1. 简介
我们如何到达月球?美国宇航局强大的 SLS(太空发射系统)火箭将把四名宇航员送上猎户座飞船,从地球飞到月球轨道,飞行距离为 25 万英里。在首次登陆任务阿尔忒弥斯三号上,猎户座飞船将直接与商业着陆系统对接,该系统将把两名宇航员送上月球表面进行探险,然后送回猎户座飞船。对于阿尔忒弥斯四号及以后的任务,猎户座飞船将把机组人员送往门户月球空间站,他们将在那里登上着陆器,并在完成表面探险后返回。门户将成为深空科学的平台和月球表面任务的中转站。当任务的月球部分完成后,机组人员将乘坐猎户座飞船返回地球。早期的阿尔忒弥斯载人任务包括
公里,已成为航天发射操作不可或缺的组成部分。尽管视线能见度降低且接收信号功率较低,GPS 的使用仍在扩展到太空服务区 (SSV),该区从 3,000 公里延伸到地球同步轨道 (GEO)。卫星依靠 GPS 进行导航、姿态控制、空间态势感知和新的空间科学应用,例如无线电掩星。根据 2017 年 12 月 11 日的空间政策指令 1 (SPD-1)(重振美国载人太空探索计划)和 2018 年 6 月 18 日的空间政策指令 3 (SPD-3)(国家空间交通管理政策),PNT 服务也将在空间交通管理和地月服务区的未来应用中发挥重要作用,该区从 GEO 延伸到月球轨道。对于支持这些新兴应用所需的要求,各机构应通过标准 GPS 要求流程进行协调。
• 韩国探路者月球轨道器 (KPLO,也称为 Danuri) 是韩国首个月球探测任务,于 2022 年 8 月发射,通过弹道月球转移至极地低月球轨道。其目标包括确定未来月球任务的潜在着陆点。 • 美国宇航局/欧空局/加拿大航天局詹姆斯·韦伯太空望远镜于 2021 年 12 月 25 日发射,于 2022 年 1 月 24 日成功进入围绕地球-太阳 L2 拉格朗日点的光环轨道。 • 2022 年 9 月 29 日,美国宇航局的朱诺号航天器自 22 年前伽利略号逝世以来最近一次飞越木卫二。这次飞越缩短了航天器的轨道周期,并提供了月球表面的详细照片,为即将于 2024 年发射的欧罗巴快船任务做准备。 • 欧空局和日本宇宙航空研究开发机构的贝皮科伦坡号航天器正在顺利前往水星的途中,已经进行了第二次
月船一号于 2008 年 10 月 22 日从斯里哈里科塔的 Satish Dhawan 航天中心发射升空。它使用了本土研制的极地卫星运载火箭 (PSLV-XL)。该航天器于 2008 年 11 月 8 日成功进入月球轨道,仅在六天后就释放了月球撞击探测器。同一天,由于恒星跟踪传感器故障,月球撞击探测器在沙克尔顿陨石坑附近坠毁。撞击探测器坠毁时,人们可以分析月球地下土壤中是否有冰的痕迹。月船一号在距月球表面仅 100 公里的地方盘旋,拍摄了大量月球地形的高分辨率图像。它还进行了矿物测绘,并搜寻了月球表面是否有放射性元素。该任务的主要成就之一是发现月球土壤中存在大量水分子。该任务仅花费了 5600 万美元,为我们提供了有关月球表面的重要信息。它还在月球南极发现水冰,可用于饮用和其他用途。
空间实验在技术上具有挑战性,但是天文学和星体化学研究的科学重要组成部分。国际空间站(ISS)是一个非常成功且持久的研究平台的太空实验的一个很好的例子,在过去的二十年中,它提供了大量的科学数据。但是,未来的太空平台为进行实验提供了新的机会,该实验有可能解决天体生物学和星体化学领域的关键主题。从这个角度来看,欧洲航天局(ESA)主题团队天文学和星体化学(带有更广泛的科学社区的反馈)确定了许多关键主题,并总结了2021年的“ ESA Scispace Scipace Science Community Community Community White Paper”《天体生物学和星体化学》。我们重点介绍了未来实验的开发和实施的建议,讨论原位测量,实验参数,暴露场景和轨道的类型,以及确定知识差距以及如何提高目前正在开发或高级计划阶段的未来太空曝光平台的科学利用。除了国际空间站外,这些平台还包括立方体和小萨特人,以及较大的平台,例如月球轨道门户。我们还为月球和火星上的原位实验提供了前景,并欢迎新的可能性支持搜索我们太阳系内外的系外行星和潜在的生物签名。
Artemis 计划包含一系列探索和科学任务。Artemis 不是传统意义上的 NASA“计划”,没有统一的领导和资金。相反,它是跨任务、资金线、理事会和合作伙伴关系的统一目标的广泛表达。Artemis 计划由拥有广泛商业和国际合作伙伴关系的 NASA 牵头,“将在月球上建立可持续的存在,为火星任务做准备”。2 Artemis 计划将包括月球轨道和月球表面的载人作业以及这些区域的无人机器人作业。作为 Artemis 计划的一部分,NASA 牵头的主要计划包括 Gateway、载人着陆系统 (HLS)、猎户座、太空发射系统 (SLS)、商业月球有效载荷服务 (CLPS)、舱外活动 (EVA) 和人类表面机动性 (HSM) 计划以及月球基地。每个计划都涉及商业和国际捐助。国际合作伙伴主导的行动可能包括欧洲大型物流着陆器 (EL3)、加压和非加压探测车、额外的机器人地面任务以及对地面栖息地的贡献。3,4,5,6 NASA 及其合作伙伴还在考虑旨在确保行动可持续性的其他行动,例如现场资源利用 (ISRU) 和支持行动的技术能力,包括电力、通信和着陆基础设施。这些要素共同构成了阿尔忒弥斯计划——这是人类有史以来最雄心勃勃的太空探索计划。
月球门将在月球周围或L2 Lagrange点的光晕轨道上放置在轨道上。拟议的Lunar Gateway是一种改变游戏规则的人,可以利用Cubesats启用新科学,并为利用这些小型航天器作为探险家提供了令人耳目一新的新机会。我们建议开发一个月球底兰特,该降落器将从月球网关物流模块(假定在L2处)部署,以执行对月面的科学和探索。Cubesat Lander将降落在Mare Tranquilitatis附近,以确定空隙的程度,并确定挥发性资源的存在,包括其Regolith中的水。Cubesat Lander是一个27U,其固定尺寸为34 cm×35 cm×36 cm,质量为54 kg。它将从月球网关部署,并通过使用其板载高性能绿色推进(HPGP)系统进行月球轨道插入,然后进行下降操纵,以进入距月球表面25公里的高度。从那里,登陆器将在母马静脉下进行动力下降,需要4-6分钟。车载视觉导航将通过迅速发射下降推进器来降落在母马静脉区域上。Lander配备了通过对Regolith(Vapor)仪器进行挥发性分析,以执行Lunar Regolith的热解和质谱法。此外,它将携带三个球形跳跃机器人(Spherex),这些机器人将跳到坑内,以执行矿坑内的岩石石的映射和电阻抗光谱,以确定水中的存在。
摘要:本研究的目标是定义一个通过无线电力传输为月球表面提供电力的月球轨道系统。为了满足月球基地的电力需求,需要使用放置在稳定轨道上的卫星群。该卫星群的每颗卫星都由太阳能电池阵列和电池组成,为电力传输系统供电。该系统由激光器组成,可将电力传输到月球表面的接收器。接收器是光子能量转换器,是针对激光单色光优化的光伏电池。这项工作的成果将通过研究不同的轨道涵盖系统的架构,特别是分析一些子系统,例如激光器、电池组和放置在月球地面上的接收器。这项研究考虑了两种不同的能源需求,因此考虑了两种不同的接收器位置:首先,在阿尔特弥斯任务着陆点的战略位置,即月球南极附近的沙克尔顿陨石坑;其次,在月球赤道上,为未来和新的探索做准备。目标是评估满足月球基地所需功率的可能配置,估计约为 100 kW。为此,分析了几种情况:三种不同的轨道,一种是极地轨道,一种是冰冻轨道,一种是赤道轨道(地球-月球远距离逆行轨道),卫星数量不同,接收器的传输锥角也不同。本文的主要目的是对上述系统进行全面的可行性研究,特别强调选定的子系统。虽然简要介绍和讨论了热控制、激光瞄准和姿态控制子系统,但还需要进一步研究以深入研究这些领域,并更全面地了解它们在系统中的实施和性能。