NASA Glenn研究中心的低温电子组一直在努力开发电动机控制电子产品,该电子设备将在40 K的温度下运行。该组进行了测试,以确定哪些电子组件将在如此低的温度下运行。然后,确定在低温下成功运行的组件被用于设计低温运动控制器电路。建立,评估和证明是在70 K处运行的原型电机控制器电路。接下来,Glenn Researchers计划在温度更低的温度下确定电路性能 - 降低到40K。
Mini-EUSO 是一台于 2019 年在国际空间站上发射的望远镜,目前位于空间站的俄罗斯部分。该任务的主要科学目标是寻找核物质和奇异夸克物质,研究瞬变发光事件、流星和流星体等大气现象,观察海洋生物发光以及人造卫星和人造空间碎片。它还能够观测能量高于 10 21 eV 的超高能宇宙射线产生的广泛空气簇射,并探测地面激光产生的人造簇射。Mini-EUSO 可以在紫外线范围(290 - 430 nm)内绘制夜间地球地图,空间分辨率约为 6.3 公里,时间分辨率为 2.5 秒,通过俄罗斯 Zvezda 模块中面向天底的紫外线透明窗口观察我们的星球。该仪器于 2019 年 8 月 22 日从拜科努尔航天发射场发射,其光学系统采用两个菲涅耳透镜和一个焦面,焦面由 36 个多阳极光电倍增管组成,每个光电倍增管有 64 个通道,总共 2304 个通道,具有单光子计数灵敏度,总视场为 44 ◦。Mini-EUSO 还包含两个辅助摄像头,用于补充近红外和可见光范围内的测量。在本文中,我们描述了该探测器并展示了运行第一年观察到的各种现象。
Farrar,史蒂夫。 “空间的景象是通用吸引力。”剑桥晚报,1996年9月25日,第1页。 8。Farrar,史蒂夫。“空间的景象是通用吸引力。”剑桥晚报,1996年9月25日,第1页。 8。
在本文中,我们量化了SGR a *的地平尺度发射的时间变异性和图像形态,如EHT在2017年4月的波长1.3 mm所示。我们发现,SGR A *数据表现出可变性,超过了数据中的不确定性或星际散射的影响所能解释的。这种变异性的大小可能是相关孔密度的很大一部分,在某些基准线上达到约100%。通过对简单几何源模型的探索,我们证明了与其他具有可比复杂性的形态相比,环类形态为SGR A *数据提供了更好的拟合。我们开发了两种策略,以将静态几何环模型拟合到Time-sgr a * data;一种策略将模型拟合到源是静态并平均这些独立拟合的数据的简短段,而其他拟合模型则使用参数模型与平均源结构围绕结构可变性功率谱的参数模型进行完整数据集。几何建模和图像域特征提取技术都确定环直径为51.8±2.3μ,为(68%可靠的间隔),环形厚度约束,其FWHM的FWHM约为30%和50%。要将直径测量值提高到共同的物理尺度,我们使用GRMHD模拟产生的合成数据对其进行了校准。该校准将重力半径的角度大小限制为 - + 4.8 0.7 1.4μAS,我们将其与Maser视差的独立距离测量结合在一起,以确定SGR A *的质量为´ - + 4.0 10 10 0.6 1.1 6 1.1 6 M e。统一的天文学词库概念:黑洞(162)
《澳大利亚天文学会刊物》刊登的研究结果表明,利用这项新技术发现了两个快速射电暴和两颗偶发中子星,并改进了四颗脉冲星的定位数据。此后,他们又发现了 20 多个快速射电暴。
防空系统:防空战术控制雷达(ADTCR),防空消防雷达(ADFCR)。导弹系统:远程陆地攻击导弹(LR-LACM),对空气导弹的快速反应表面(QRSAM)和中型反舰队导弹(MRASHM)。高级平台:多帝国海事飞机(MMMA),SCA(信号智能和COMJAM飞机)和反坦克影响矿山的Prachand。AI工具:DRDO开发了“ Divya Drishti”,该工具将面部识别与不变的生理特征相结合,例如步态(步行模式)和骨骼。旗舰计划:两项旗舰计划的全面工程开发(FSED)是高级中型战斗机(AMCA)和安得拉邦的新导弹测试范围,并被内阁安全委员会(CCS)批准。导弹系统:
美国退出的人强调了对全球卫生领导的需求,因为它的离开破坏了对谁的运作至关重要的资金和专业知识。尽管谁面临官僚主义,政治影响和效率下降的批评,但其在应对全球健康挑战方面的作用仍然至关重要。印度相对较小但有影响力的贡献,尤其是在传统医学和数字健康方面,强调了其在全球卫生治理中的潜力越来越大。 随着全球卫生机构的改革,印度可以利用其专业知识和创新的卫生解决方案来成为领导者。 这一刻为印度提供了倡导公平且可持续的全球健康实践的机会。印度相对较小但有影响力的贡献,尤其是在传统医学和数字健康方面,强调了其在全球卫生治理中的潜力越来越大。随着全球卫生机构的改革,印度可以利用其专业知识和创新的卫生解决方案来成为领导者。 这一刻为印度提供了倡导公平且可持续的全球健康实践的机会。随着全球卫生机构的改革,印度可以利用其专业知识和创新的卫生解决方案来成为领导者。这一刻为印度提供了倡导公平且可持续的全球健康实践的机会。
摘要“起源”太空望远镜(Origins)是美国国家航空航天局(NASA)为准备美国2020年天文学和天体物理学十年调查而选定的四个科学和技术定义研究之一。起源将追溯人类起源的历史,从尘埃和重元素永久改变宇宙景观到现在的生活。它旨在回答三个主要的科学问题:星系如何形成恒星、形成金属以及如何通过再电离生长其中心的超大质量黑洞?在行星形成过程中,宜居性条件是如何发展的?围绕 M 矮星运行的行星是否支持生命?起源在中远红外波长下运行,波长范围从 ~ 2.8 μ m 到 588 μ m,由于其冷(~ 4.5 K)孔径和最先进的仪器,其灵敏度比之前的远红外任务高 1000 倍以上。
这项工作提出了一种在电磁频谱的无线电范围内搜索重组线的方法,该方法通过几种单独的测量结果结合使用了灵敏度的显着提高。无线电区域中重组线的检测,尤其是正电子的重组线,是寻找暗物质的必不可少的灰烬,因为该线的强度揭示了观察到的位置的阳性量。这对于计算歼灭横截面的计算和有关暗物质的自我宣传的发现至关重要。这项工作中介绍的方法应用于13-15 GHz的频率范围,并使用2021年至2024年之间收集的数据,作为Telamon Project的一部分,Effelsberg的100 m射电望远镜。在NGC7027和W3OH校准源中检测到了这种方法的功能,并检测到氢重组线(H76α-H79α)。对于正电子(PS60α -PS62α)的重组线的振幅和流动,计算上限。在整个观察期的覆盖数据中,有一个3σ上限,河流密度为0。6-0。7 mjy,具体取决于重组线。此外,比较了NGC7027校准源的两种方法。单独确定NGC7027的每个重组线的上限的“单个”方法,提供3σ上限为5。1-7。2 mjy。6-4。0 mjy。相反,“组合”方法将三条线链接在一起,然后确定上限,3σ-上限为3。
1 National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720, USA 2 Astrobiology Center, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 3 LESIA, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, Sorbonne Paris Cite, 5 place Jules Janssen,92195法国Meudon 4悉尼天体仪器仪器实验室,悉尼大学物理学院,悉尼大学,悉尼,新南威尔士州,新南威尔士州2006年,澳大利亚5澳大利亚5管家,亚利桑那州图森大学,亚利桑那大学,亚利桑那州85721,美国6 USICAL SCIENCES 6 ARIZONES,ARIZONE,INSIZONA,TUCSON,TUCSON,TUCSON,AZ 85721,AZ 85721111 BLVD,PASADENA,CA 91125,美国8韩国天文学与太空科学研究所(KASI),大韩民国大道34055,加利福尼亚大学9,加利福尼亚大学,欧文分校,G302 C学生中心,CA 92697,CA 92697,CA 92697,美国10号加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,405 Hilgard Averentry,Ca 90095. 90095,美国90095. 9009595.物理学,悉尼大学,新南威尔士大学,2006年,澳大利亚12 AAO-USYD,悉尼大学物理学院,悉尼,悉尼,2006年,2006年,澳大利亚13,佛罗里达州中央佛罗里达大学4304 Scorpius ST,Orlando Scorpius ST,Orlando 4304东京大学,东京邦基 - 库7-3-1,日本113-0033,日本16 Naoj,2-21-1-1-1-1-1-1-1-1-171-8588,日本17物理与天文学系,得克萨斯大学,得克萨斯大学,得克萨斯大学,位于圣安东尼奥,圣安东尼奥,圣安东尼奥,TX 78006,美国TX 788006,美国18 Univ。Grenoble Alpes,CNRS,IPAG,414 Rue de la Piscine,38400 Saint-Martin-D'Hères,法国,