Artemis运动试图在2025年将人类返回月球的表面,然后在2030年代将船员任务送往火星。这项工作的关键是太空发射系统(SLS)的开发,这是两阶段的重型火箭,它将猎户座多功能人员车辆推向太空。2022年12月,Artemis I完成了25天的未蛋式测试任务,此前发射了将近4年和数十亿美元的成本增加。NASA的全部Artemis活动成本预计将从2012财年到2025财年达到930亿美元,而SLS计划的成本为26%(238亿美元)。 NASA为Artemis IV开发的太空飞行系统包括网关哨所,人类着陆系统以及SLS火箭的更强大的变体(称为1B块),这将使Artemis运动更加复杂且昂贵。NASA的全部Artemis活动成本预计将从2012财年到2025财年达到930亿美元,而SLS计划的成本为26%(238亿美元)。NASA为Artemis IV开发的太空飞行系统包括网关哨所,人类着陆系统以及SLS火箭的更强大的变体(称为1B块),这将使Artemis运动更加复杂且昂贵。
IRMMW-THz 2023 是一场纯现场活动,今年没有混合组件。完全面对面的会议将在 Centre Mont-Royal 举办,距离麦吉尔大学主校区仅一个街区,可通过所有主要公共交通路线轻松抵达,这些公共交通路线可让您前往蒙特利尔这座迷人的城市的其他地区。Centre Mont-Royal 是一个现代化的会议设施,曾举办过许多著名的会议,非常适合举办我们规模适中的会议,拥有宽敞的研讨会剧院供全体会议使用,并设有方便使用的分组讨论室供我们举办五个平行会议。会议参展商和海报会议将在 Foyer International(3 楼)和 Foyer Mont-Royal(4 楼)举办,为交流和社交活动提供大量机会。除了这份印刷版会议计划外,您还可以通过 Whova 数字平台和移动应用程序访问该计划,我们将在活动期间传达交流和通知。
虽然基于事件的空间态势感知提供了显著的优势,但基于事件的传感范式也带来了传统基于帧的 SSA 所没有的新挑战。快速而微弱的点源很难在其他来源产生的虚假变化检测中识别出来,尤其是来自昆虫、蝙蝠和飞机的检测。神经形态传感器缺乏绝对亮度信息,当 RSO 和大气物体的轨迹从观察者的角度来看相似时,更难区分它们。虚假检测不仅限于大气伪影,也可能是由于传感器噪声造成的。虽然最近的神经形态传感器与旧型号相比已显著改善了噪声特性,但仍然希望尽可能接近本底噪声来检测越来越微弱的物体。
摘要 本研究旨在检验 JWST 信息来源对改变对至高无上之人的信仰的影响。使用描述性和推断性统计数据对数据进行了分析。在接受调查的 1009 名参与者中,如果 JWST 在太空中发现外星生命,46.7% 的人会感到高兴,而 44.9% 的人会感到害怕。JWST 信息来源对改变对至高无上之人的信仰有显著影响 (R = 0.395, R2 = 0.156, Adj R2 = 0.144, P < 0.05)。如果发现外星智慧生命,从 Facebook、教堂/清真寺和宗教领袖那里获取有关 JWST 的信息更有可能导致对至高无上之人的信仰改变。研究发现,图书馆对改变对至高无上之人的信仰没有显著影响。因此,报告建议图书馆继续作为客观的信息来源,而宗教组织则应就太空中可能存在的东西进行更深入的讨论。
GRD = 地面分辨率距离(原生)对于 4m 卫星,运行望远镜比火箭整流罩更宽,未展开的望远镜的 GRD 值大约大 4 倍(60 厘米和 1.2 米)4m 卫星示例只是为了展示类似于阿丽亚娜 6 的运载火箭的潜力
巨型麦哲伦望远镜的设计、制造和现场施工正在进行中。主镜所需的七个直径为 8.4 米的镜面部分中,两个已经完成并入库,第三个已按规格抛光,另外三个已经铸造并处于不同的制造阶段,玻璃已准备好用于铸造最后的部分。望远镜结构即将进行最终设计审查和开始制造。智利拉斯坎帕纳斯场址所需的住宅建筑和其他支持施工的设施已经完工。外壳和望远镜墩座地基的硬岩开挖已经完成。外壳处于最终设计阶段。第一个离轴自适应次镜正在制造中,主镜单元已经制造完毕并正在测试中。两个自适应光学和相位测试台正在制造中,用于风险降低测试和组件鉴定。我们正在根据不断变化的项目因素(包括 US-ELT 计划)修改制造和施工计划,该计划在美国国家科学院的 ASTRO2020 十年调查中名列前茅。关键词:GMT、GMTO、巨型麦哲伦望远镜、极大望远镜
摘要。我们描述了将在2.4 m Nancy Grace Roman Space望远镜上飞行的冠状器仪器(CGI)的光子计数摄像头系统的飞行电子乘电荷耦合设备(EMCCD)的开发。罗马是一项NASA旗舰任务,它将研究暗能量和暗物质,并在2020年代中期计划推出,寻找系外行星。CGI旨在证明高对比度成像和系外行星光谱所需的技术,例如高速波浪前传感和指向控制,具有可变形镜的自适应光学器件以及具有光子计数,可见敏感的(350至950 nm)检测器的超级噪声信号检测。相机系统是这些演示的核心,需要在高达1000帧-S -1时自适应地感知微弱和明亮的目标(10-4-10 7计数-S-1),以向仪器控制环提供必要的反馈。该系统包括两个相同的摄像机,一个相机表现出微弱的光科学能力,另一个用于提供仪器指向的高速实时感知。我们在喷气推进实验室(美国加利福尼亚州帕萨迪纳)的计划评估了辐射损坏的商业EMCCD传感器的低信号性能,并将这些测量作为与开放大学(米尔顿·凯恩斯(Milton Keynes),英国王国和泰瑞德尼·凯恩(Milton-Ekeynes)和泰瑞德尼(Teledyne-e2V)(泰瑞德尼(Teledyne-E2V))(英国凯尔多·金(Chelden-e2v)(英国凯尔多·金(Cheldne-E2V),英国王者),对靶向辐射硬化修饰进行了基础。然后开发了一对具有测试功能的EMCCD,并在此报告其低信号性能。©作者。[doi:10 .1117/1.Jatis.9.9.1.016003]该程序导致了EMCCD的飞行版本的开发,其低信号性能在暴露于2.6×10 9质子-CM-2(10 MeV等效)后,超过三倍以上。飞行EMCCD传感器是通过与Teledyne-E2V(英国切尔姆斯福德)的合同来贡献的。我们将描述用于评估光子计数性能的程序要求,传感器设计,测试结果和指标。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。
Ariel(大气遥感红外系外行星大型巡天)是欧空局“宇宙视野”计划框架内采用的 M4 任务。其目的是通过凌日光谱法对已知系外行星的大气层进行巡天。发射计划于 2029 年进行。Ariel 科学有效载荷包括一台离轴、未被遮挡的卡塞格林望远镜,该望远镜为波段在 0.5 至 7.8 µm 之间的一组光度计和光谱仪提供信号,并在低温(55 K)下运行。望远镜组件采用创新的全铝设计,可耐受热变化,避免影响光学性能;它由一个主抛物面镜组成,其椭圆形孔径为 1.1 m 的长轴,随后是安装在重新聚焦系统上的双曲面次镜、抛物面重新准直三镜和一个平面折叠镜,将输出光束引导至与光学平台平行。基于 3 个柔性铰链的创新安装系统支撑着光学平台一侧的主镜。光学平台另一侧的仪器舱内装有 Ariel 红外光谱仪 (AIRS) 和精细制导系统/近红外光谱仪 (FGS/NIRSpec)。望远镜组装处于初步设计审查的 B2 阶段,开始制造结构模型;一些组件,即主镜、其安装系统和重新聚焦机制,正在进行进一步的开发活动,以提高其准备程度。本文介绍了 ARIEL 望远镜组装的设计和开发。
立方体卫星等纳米卫星的可用体积对望远镜直径施加了物理限制,限制了可实现的空间分辨率和光度测定能力。例如,12U 立方体卫星通常仅具有足够的体积来容纳直径为 20 厘米的单片望远镜。在本文中,我们介绍了可部署光学器件的最新进展,该器件可在 6U 立方体卫星中容纳直径 30 厘米以上的望远镜,其中 4U 的体积专用于有效载荷,2U 的体积专用于卫星总线。为了达到这种高紧凑度,我们在发射时折叠主镜和次镜,然后在空间中展开和对齐。通过控制每个镜段的活塞、倾斜和倾斜,可实现可见光谱部分的衍射极限成像质量。在本文中,我们首先描述整体卫星概念,然后报告有效载荷的光机设计以部署和调整镜子。最后,我们讨论了主镜的自动相位控制,以控制望远镜的最终光学质量。
准确稳定的航天器指向是许多天文观测的要求。特别挑战纳米卫星,因为表面积不利 - 质量比和甚至最小的态度控制系统所需的量。这项工作探讨了无执行器精度或执行器引起的干扰(例如抖动)不受限制的机构中对天体物理态度知识和控制的局限性。对原型6U立方体上的外部干扰进行了建模,并根据可用体积内的望远镜的可用恒星量和掌握限制感测知识计算。使用模型预测的控制方案集成了这些输入。对于1 Hz的简单测试用例,具有85毫米望远镜和单个11级恒星,可实现的身体指向预计为0.39弧秒。对于更一般的限制,可以整合可用的星光,可实现的态度感应大约为1毫米秒,这导致了应用控制模型后的20 milliarcseconds的预测身体指向精度。这些结果表明,在达到天体物理和环境限制之前,态度传感和控制系统的重大空间。