Artemis运动试图在2025年将人类返回月球的表面,然后在2030年代将船员任务送往火星。这项工作的关键是太空发射系统(SLS)的开发,这是两阶段的重型火箭,它将猎户座多功能人员车辆推向太空。2022年12月,Artemis I完成了25天的未蛋式测试任务,此前发射了将近4年和数十亿美元的成本增加。NASA的全部Artemis活动成本预计将从2012财年到2025财年达到930亿美元,而SLS计划的成本为26%(238亿美元)。 NASA为Artemis IV开发的太空飞行系统包括网关哨所,人类着陆系统以及SLS火箭的更强大的变体(称为1B块),这将使Artemis运动更加复杂且昂贵。NASA的全部Artemis活动成本预计将从2012财年到2025财年达到930亿美元,而SLS计划的成本为26%(238亿美元)。NASA为Artemis IV开发的太空飞行系统包括网关哨所,人类着陆系统以及SLS火箭的更强大的变体(称为1B块),这将使Artemis运动更加复杂且昂贵。
计算机借助大型望远镜,可以捕捉行星、地球、月球、小行星、恒星、彗星、星系、其他天体以及宇宙中未知物质的高质量图像。数码摄影改变了天文学的方式,因为我们可以改变图像和颜色,使用滤镜和卫星信息来更清晰地查看图像。我们可以放大图像,看到比肉眼更多的内容。著名的哈勃太空望远镜由美国宇航局于 1990 年发射,在计算机的帮助下,它继续向地球传输数以千计的宇宙图像。如果计算的话,我们每周从哈勃望远镜获得的数据有 120 千兆字节。
• 生活技能 o 社交、全球意识、倾听背景 美国宇航局的韦伯望远镜将利用其卓越的角分辨率和近红外仪器来发现和研究与我们相似的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。韦伯太空望远镜将进行曾经被认为不可能的观测;仅仅为了建造它,就必须发明多种新技术。这面开创性的镜子和强大的仪器将发现和研究遥远的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。它还将深入研究过去,追溯最早的恒星和星系诞生的时代。通过扩展我们对宇宙的了解,望远镜将帮助我们回答这些引人注目的问题:“我们是如何来到这里的?”和“我们是孤独的吗?”诺斯罗普·格鲁曼公司致力于确保这一曾经不可想象的成就成为现实。韦伯望远镜被美国国家研究委员会列为天文学和天体物理学的首要任务,是 NASA 和科学界的一项重要项目,也是美国地面和太空天体物理学项目的核心。负责该项目的诺斯罗普·格鲁曼工程师们的任务并不轻松。人们耗费了一亿个小时的时间来建造这架望远镜,它是有史以来最大、最复杂、最强大的太空望远镜。听听工程师们对自己的成就感到自豪——他们正在书写太空探索历史的下一篇章。https://www.youtube.com/watch?v=rErBbFiLbVc 本课将关注三个领域:1)日本宇宙航空研究开发机构 (JAXA) 将折纸原理作为宇航员选拔过程的一部分。候选人必须在为期一周的观察期间折一千只纸鹤。观察员通过这项任务在时间限制内重复性地分析候选人。 2) 了解参与开发韦伯太空望远镜的人员从事的不同工作以及文化多样性。 3) 折纸原理在太空探索中的作用:a) 卫星和深空望远镜(如詹姆斯·韦伯太空望远镜)的许多部件在太空中展开。科学家必须弄清楚如何设计每个部件,使其在发射后正确展开。
• 使用阿西亚戈天文台的哥白尼 182 厘米望远镜对低阶波前传感甜甜圈技术进行天空性能测试。您将描述望远镜光束的光学像差,并将该技术的性能与其他波前传感技术(如 Shack-Hartmann 和金字塔波前传感器)进行比较。
在未来几年中,用于科学目的的激光束将越来越多地用于天文望远镜。尽管望远镜站点附近的空中交通量通常极低,但必须解决同时发生的飞机意外照明风险(Wizinowich 等人1998)。正在建造一个用于近红外校正的自适应光学 (AO) 系统(Lloyd-Hart 等人1998),以部署在亚利桑那州南部霍普金斯山的一台新的 6.5 米望远镜(多镜面望远镜 (MMT) 转换)上(West 等人1997)。波前像差将通过参考沿望远镜光轴投射的 10 W 激光束产生的信标来测量(Jacobsen 等人1994)。激光调谐到原子钠的 D2 线,照亮中间层的钠原子。共振背散射光在望远镜上显示为人造“星”。旧的六镜配置中的 MMT 现已拆除,6.5 m 的施工正在快速进行,预计将于 1999 年秋季首次亮相。新的 AO 系统预计将在几个月后首次亮相。然而,在过去三年中,MMT 一直充当原型 AO 系统的试验台,包括一台 3 W 激光器(Ge 等人1998)。在此期间,我们制定了确保望远镜附近空中交通安全的程序。在激光活动开始前,通常会发布飞行员通知 (NOTAM)。激光从未指向 45° 天顶角以下。当预计或正在进行激光活动时,指定的激光安全官 (LSO) 必须始终在场,并且现场的专用电话线确保当地联邦航空管理局人员可以立即联系 LSO。最重要的是,我们开发了一种自动系统,旨在检测飞机并在任何潜在照明之前关闭激光。
抽象的时间域调查(例如ZTF,ASAS-SN和Panstarrs)发现了无数现象,例如在日常时间表上不断发展的超新星。这些系统通过观察单个瓷砖并定期重新访问先前观察到的区域,每晚每周至每周一次的全天空节奏,但它们可能会错过以更快的速度演变或出现在其视野外(FOV)以外的瞬态。达到这些快速,罕见的瞬态需要同时调查整个天空。evryscope遵循这种方法,每两分钟,一对北部和南部的望远镜每两分钟都在地平线上方调查天空。移至下一代的调查,Argus阵列是一个全天空系统,可将900个望远镜多路复用到单个安装座上。使用ArcSecond尺度采样,SCMOS探测器和宽场光学元件,Argus可以达到外层状瞬变。然而,随着分辨率接近观看限制的性能,Argus的物理数量级比Evryscope大。这需要一个自定义的安装座,能够支持和跟踪900望远镜,同时保持光学材料的挑战等同于为目前操作的机器人望远镜组合提供服务。我提出了针对这些挑战的解决方案,该挑战是在Argus Pathfinder阵列中实施的,这是我论文工作的中心主题。这个缩放的原型演示了如何构造和维护Argus数组。我详细介绍了我们的新假尾望远镜设计,在操作数百个单独的望远镜进行初始调试时,减少了维护开销。我们以Argus Pathfinder的早期绩效结果得出结论。i还提出可扩展的运动控制系统,驱动Argus阵列的当前设计。
摘要 本培训手册为海军和海军预备役人员准备,介绍了光学商店使用的理论和实践技能。结合镜子、棱镜、透镜和基本光学系统分析光学理论。系统。遵循机械设计和构造的基础知识,研究维护程序,以提供一般的知识。光学维修。 特别的。描述了诸如望远镜、望远镜、磁罗盘、方位角和水平仪、六分仪、测距仪、望远镜、双筒望远镜、潜艇潜望镜和夜视瞄准器之类的仪器。为了给读者提供足够的背景知识,还讨论了车床、磨床、铣床和钻床的操作。除了用于解释目的的插图外,还提供了有关光学Mara评级结构的信息。(CC)
摘要 本培训手册为海军和海军预备役人员准备,介绍了光学商店使用的理论和实践技能。结合镜子、棱镜、透镜和基本光学系统分析光学理论。系统。遵循机械设计和构造的基础知识,研究维护程序,以提供一般的知识。光学维修。 特别的。描述了诸如望远镜、望远镜、磁罗盘、方位角和水平仪、六分仪、测距仪、望远镜、双筒望远镜、潜艇潜望镜和夜视瞄准器之类的仪器。为了给读者提供足够的背景知识,还讨论了车床、磨床、铣床和钻床的操作。除了用于解释目的的插图外,还提供了有关光学Mara评级结构的信息。(CC)
案例分析——南希·格雷斯·罗曼太空望远镜:南希·格雷斯·罗曼太空望远镜具有高分辨率成像和广阔的视场、近红外灵敏度、精确的指向控制和高探测速度,将以前所未有的能力解决关键的宇宙学问题 [1]。为了探索宇宙的膨胀和结构,该望远镜将提供 <1 nm 的波前稳定性,并使用由 18 个 4k × 4k 近红外探测器组成的广角仪器 [2]。随着罗曼任务收集数百万个星系的数据,人工智能将成为处理超深场的关键资产 [3]。在本文中,我们讨论了统计和基于机器学习的建模如何在这方面带来新发现。机器学习方法(例如用于大量图像的卷积神经网络)特别适合有效地分析大型宇宙学数据库,但结果的可解释性是一个潜在的限制。由于收集到的数据将通过米库尔斯基太空望远镜档案馆 (MAST) 开放,宇宙学和天体物理学界将能够跨机构和学科合作,进行最先进的分析,改进已开发的基准 [4]。