拥有液态水地下海洋的冰卫星是太阳系中最有前途的天体生物学目标之一。在这项工作中,我们评估了在前体生命探测任务中部署激光帆技术的可行性。我们研究了前往土卫二和木卫二的此类激光帆任务,因为这两颗卫星发射出的羽流似乎可以进行现场采样。我们的研究表明,千兆瓦激光技术可以将 100 公斤的探测器加速到 ∼30 公里/秒的速度,然后在 1 - 4 年的时间内到达木卫二,在 3 - 6 年的飞行时间内到达土卫二。虽然激光阵列的理想纬度各不相同,但将必要的基础设施放置在靠近南极圈或北极圈的地方可能是土卫二任务在技术上可行的选择。至关重要的是,我们确定与这些卫星的最小相遇速度(约 6 km s −1 )可能接近最佳速度,可通过类似于欧罗巴快船任务上的表面灰尘分析仪的质谱仪来检测羽流中的生物分子构件(例如氨基酸)。总之,太阳系中的冰卫星可能非常适合通过激光帆结构方法进行探索,尤其是在需要低相遇速度和/或多次任务的情况下。
人们希望机器人航天器能够在未知的动态环境中进行探索。欧罗巴着陆器任务概念就是这样一个任务,它需要处理极其有限的寿命和能源供应,管理长时间停电的间歇性通信,面临众多环境危险,最终距离地球太远而无法依赖人类控制。迄今为止,没有任何任务能够达到所需的自主性水平,也没有任务能够像这次任务一样,在通信限制、不确定性和任务概念复杂性方面达到同等水平。因此,必须证明自主性的可行性,然后才能委托它进行关键任务规划。在本文中,我们提出了一个自主软件原型,它可以展示和测试不同规划人员和执行人员在有限的人类干预下执行复杂、以科学为中心的任务的能力。原型使用分层效用模型,用于最大化预期的科学回报量以及地面施加的任务目标数量。我们展示了该系统如何处理复杂太空任务中预期的一些自主任务,例如决策、现场数据采集和分析、数据优先级排序、资源管理和故障响应处理(无论是在模拟中还是在实际硬件上)。通过几个基于场景的实验,我们展示了不同的规划人员和执行人员如何应对欧罗巴着陆器任务概念的挑战。我们还展示了该系统可以与硬件原型配合使用,进行自主现场测试。
寻找生命:低温机器人对木星冰冷卫星木卫二的探测任务目标 学生将: § 了解我们如何确定另一个天体的构成 § 分析数据以了解木卫二的不同层面 § 构建木卫二层面的 3D 模型横截面 § 描述未来如何使用低温机器人对木卫二进行探测 § 定义低温机器人,即“一种可以穿透水冰的机器人。低温机器人利用热量融化冰,并利用重力下沉。” § 演示此低温机器人如何穿透木卫二的冰壳,到达其液态海洋并探索生命迹象 § 有效协作和沟通,以创建未来现实世界的 NASA 任务 建议年级 5 年级 - 12 年级 学科领域 天文学、生命科学、工程学、物理科学 时间表 40 - 60 分钟 NGSS 科学标准 • 3-5-ETS1-2 根据每个问题的标准和约束的程度,生成并比较问题的多种可能解决方案 • MS-LS1-5 - 根据环境和遗传因素如何影响生物生长的证据构建科学解释 • MS-LS2-1 - 分析和解释数据以提供资源可用性对生态系统中生物和生物种群的影响的证据 • MS-PS1-6 - 开展设计项目,构建、测试和修改通过化学过程释放或吸收热能的设备 • MS-ETS1-2 使用系统过程评估竞争设计解决方案,以确定它们满足问题的标准和约束 • HS-ETS1-2 通过将复杂的现实问题分解为可以通过工程解决的更小、更易于管理的问题来设计解决方案 21 世纪基本技能 • 批判性思维/解决问题、协作和团队合作、技术素养、开展调查、沟通、构建解释