2019 年 3 月 10 日,UTC 时间 05:47 左右,埃塞俄比亚联邦民主共和国交通运输和物流部和埃塞俄比亚民航局获悉,ET 302 航班从亚的斯亚贝巴博莱国际机场起飞几分钟后,无线电和雷达失去联系。在毫无疑问地确定飞机失踪后,埃塞俄比亚当局成立了一个技术调查小组。根据《公约》第 26 条和国际民航组织附件 13“飞机事故和事故征候调查”,交通运输和物流部部长颁布部长令,成立了一个由埃塞俄比亚民航局调查员组成的调查委员会 (IC),以开展调查。同一法令指定了一名主管调查员 (IIC) 立即领导和启动调查。根据附件 13 的规定,参与调查的人员包括:ECAA 和埃塞俄比亚航空集团 - EAIB 的技术顾问 NTSB - 设计和制造商所在国的认可代表 BEA - 认可代表,为读取 DFDR 和 CVR 提供设施和专家的国家以及 EASA - 仅在初步报告期间认可的代表
1995 年 8 月 21 日,东部夏令时间大约 1253 点,一架巴西航空公司的飞机(Embraer) EMB-120RT,N256AS,由大西洋东南航空公司 (ASA) 运营,编号为 ASE 529 航班,在爬升至 18,100 英尺时,左侧发动机螺旋桨的一个螺旋桨叶片脱落。飞机随后在佐治亚州卡罗尔顿附近紧急降落时坠毁,当时距佐治亚州亚特兰大哈茨菲尔德国际机场起飞约 31 分钟。该航班是从亚特兰大飞往密西西比州格尔夫波特的定期客运航班,载有 26 名乘客和 3 名机组人员,根据《联邦法规》第 14 篇第 135 部分的规定,按照仪表飞行规则飞行。机组人员宣布紧急情况,最初试图返回亚特兰大。机组人员随后表示,他们无法保持高度,并被空中交通管制引导至佐治亚州卡罗尔顿的西乔治亚地区机场紧急降落。飞机继续下降,并被地面撞击力和坠机后起火摧毁。机长和四名乘客受重伤。随后 30 天内,另有三名乘客因伤死亡。副驾驶、乘务员和 11 名乘客受重伤,其余 8 名乘客受轻伤。
摘要 2011 年 7 月 11 日,Heli-Union 运营的直升机 Sikorsky S76 C++ 注册号为 F-HJCS,从 Kanbauk 机场起飞,机上载有 7 名乘客和 2 名机组人员,前往 Yetagun 浮动储油卸货站 (FSO)。在 FSO 上着陆后,一名乘客下机,三名乘客登机。在此阶段,旋翼仍在转动。然后机组人员打算起飞前往 Yetagun 平台。机长(飞行员)垂直爬升。在距离平台 25 英尺处,飞行员启动周期性输入,然后声音警告响起,仪表板上的发动机故障警告灯亮起。机长注意到左发动机 T5 温度上升到红色区域(高达 983°C),并听到叮当声。他决定迫降直升机。他启动了浮动装置的部署。与海面的接触相当猛烈,然后直升机向左侧倾覆。机组人员和乘客设法逃离直升机。大约一小时后,所有机组人员和乘客都获救。三名乘客(包括副驾驶)溺水身亡,另外两名乘客受重伤。直升机乘员佩戴的紧急定位发射器或个人定位信标均未检测到信号。1) 事实信息
摘要—我们介绍了智能自动驾驶系统 (IAS),该系统能够通过使用人工神经网络和模仿学习观察和模仿人类飞行员,实现大型喷气式飞机(如客机)的自主导航和着陆。IAS 是解决自动飞行控制系统当前问题的潜在解决方案,该系统无法执行从给定机场起飞并在另一个机场降落的全程飞行。提出了一种导航技术和一种强大的模仿学习方法。模仿学习使用人类飞行员在飞行模拟器中演示要学习的任务,同时从这些演示中捕获训练数据集。然后,人工神经网络使用这些数据集自动生成控制模型。控制模型模仿人类飞行员在航路点之间倾斜导航以及执行最后进近和着陆时的技能,而飞行管理程序则生成飞行路线,并决定在当前飞行阶段启动哪些 ANN。实验表明,即使在提供有限的示例后,IAS 也能高精度地处理此类飞行任务。所提出的 IAS 是一种新方法,使用与经验丰富的人类飞行员的技能和能力相匹配的 ANN 模型来实现大型喷气式飞机的完全控制自主。
事件概要:2004 年 1 月 3 日,大约 02:45:06 UTC,04:45:06 当地时间,Flash Airlines FSH604 航班,一架波音 737-300,埃及注册号 SU-ZCF,从埃及南西奈的沙姆沙伊赫国际机场 (SSH) 起飞后不久坠毁在红海。该航班是一架飞往法国戴高乐机场 (CDG) 的客运包机,中途在开罗国际机场 (CAI) 加油。604 航班从沙姆沙伊赫机场起飞,机上有 2 名飞行员(机长和副驾驶)、1 名观察员、4 名机组人员、6 名下班机组人员和 135 名乘客。飞机因与红海的撞击力而损毁,无人生还。飞机从沙姆沙伊赫 22R 跑道起飞,于 UTC 时间 02:42:33 升空,大约在坠机前 2.5 分钟,并已获准从位于 22R 跑道正北的沙姆沙伊赫 VOR 站沿 306 径向线左转爬升。此爬升转弯使起飞航班能够获得足够的高度,然后继续飞越飞往开罗的航线上的高地。604 航班作为包机在埃及领空运行,根据埃及民航条例第 121 部分的规定运营
11:56 左右,滑翔机在空中牵引下从滑翔机场起飞。13:08:06,滑翔机从滑翔机场西北约 4.4 海里处约 18,700 英尺的高度向西北方向爬升。飞行员向东京区域管制中心(以下简称“ACC”)报告,他正在爬升至 18,000 英尺以上的高度。13:49:00,滑翔机在滑翔机场西南约 25 海里处约 17,600 英尺的高度向南飞行。飞行员向 ACC 报告,他正在 17,000 英尺的高度向南飞行。13:55:50 滑翔机从事故现场西北偏北约 8.0 海里处约 22,200 英尺的高度向南爬升。飞行员向 ACC 报告,他正以 22,000 英尺的高度向南飞行。14:00:10 滑翔机到达事故现场西北偏西约 5.0 海里处约 25,000 英尺的高度,并向东南方向飞行。飞行员向 ACC 报告,他当时在 19,000 英尺的高度飞行,但声音接收微弱且不清晰,无法正常听清后续通信。14:01:20 滑翔机在事故现场以西约 4.0 海里处约 25,600 英尺的高度向东南方向飞行。
F,正如空军规划人员合乎逻辑地主张的那样,大气层和太空是一个称为航空航天的单一操作连续体,操作要求对技术的不可阻挡的压力最终必须将飞机与太空飞行器结合起来。结合的目的是设计一个有翼的后代,它可以飞入轨道,而不是用大型火箭助推器发射到轨道上,并且可以从传统机场起飞和降落。这种飞行器首次成功进入轨道并返回,将真正标志着人类征服太空的里程碑。“太空飞机”概念有一套令人敬畏的一般要求。它被设想为一种独立的单级飞行器,使用吸气式发动机在大气层中机动,并将自身加速到大约 18,000 英里/小时的卫星速度。它必须携带足够的燃料进入轨道以在太空中进行广泛机动,或者能够在高层大气中绕轨道运行时收集这些燃料。最后,太空飞机必须能够承受再入大气层的高温,在返回地球表面时在大气层中以极高的速度机动,并在任何所需的机场以相对较低的速度在动力下着陆。从军事上讲,太空飞机的吸引力是毋庸置疑的。然而,从技术角度来看,乍一看,它违反了控制飞机、吸气式发动机、助推火箭和再入飞行器设计的许多物理定律。它可以
2009 年 12 月 15 日,华盛顿州埃弗里特佩恩机场。波音公司 13,000 多名员工齐聚一堂,见证波音 787 梦想飞机首次飞往西雅图波音机场 [1] 。这是航空业的一个里程碑,因为这是向主要采用复合材料制造的飞机迈出的一大步。四年后,即 2013 年 6 月 14 日,空客 A350 XWB 首次从图卢兹-布拉尼亚克机场起飞。787 梦想飞机和 A350 XWB 的结构主要由复合材料制成。复合材料的好处众所周知;正如 AviationFacts 关于复合材料损伤检查的情况说明书 [2] 所述:“复合材料比铝更轻、更坚固、设计形状更自由。这些优势是如今飞机制造商在飞机中使用更多复合材料的原因。”然而,使用复合材料也有其缺点,例如检测复合材料的损伤并进行修复需要大量劳动力 [2] 。 2014 年 7 月 12 日,埃塞俄比亚航空公司的一架波音 787 梦想飞机在希思罗机场起火。为了使飞机恢复使用,由于无法修复火灾造成的损坏,必须更换机身的一部分。两个月后,飞机重新投入使用。复合材料的一个问题是,外部损坏并不代表内部结构。这在复合材料的修复过程中会造成问题。但是复合材料中发生的损坏是什么呢?
2018 年 2 月 28 日 10:02 1,爱沙尼亚 Smartlynx 航空公司空客 A320-214(注册号 ES-SAN)从爱沙尼亚塔林机场起飞,进行训练飞行,机上有 2 名机组人员(机长和安全飞行员)、4 名学生和 1 名 ECAA 检查员。在成功进行几次 ILS 进近和触地复飞循环之后,于 15:04,飞机成功接地跑道,但在达到抬头速度时,飞机没有按预期对侧杆输入做出反应。短暂起飞后,飞机失去高度并在跑道尽头附近坠毁。在撞击中,飞机发动机撞到跑道,起落架舱门受损。在最初的撞击后,飞机从地面爬升至 1590 英尺并再次俯冲。飞行员能够通过手动俯仰配平和发动机推力来稳定飞行路径,并掉头返回跑道。机组宣布紧急降落,飞机获准紧急降落。在进近过程中,飞机的两个发动机都失去了动力。飞机于 15:11 在跑道入口前 150 米处着陆。着陆时,飞机轮胎爆裂,飞机偏离跑道,最后在跑道左侧 15 米处停下。安全飞行员和其中一名学生在这次事故中受到轻微撞击创伤。飞机起落架舱门、起落架、两个发动机舱、发动机和飞机机身在这次事故中受到严重损坏,导致机身损毁。
1. 飞机重大事故调查过程及进展 1.1 重大事故概要 本报告所涉及的事故属于日本民用航空规章第 166-4 条第 9 项规定的“发动机指定火灾区内起火”类别(事故发生时;2006 年 10 月 1 日规章修订后,现规定为第 10 项),因此被视为飞机重大事故。这架波音 767-300 型 JA767B 客机为天马航空 306 号定期航班,于 2005 年 12 月 1 日(星期五)16:45(日本标准时间,UTC+9h)从鹿儿岛机场起飞。起飞后,右发动机立即开始振动,并在 16:48 左右启动了右发动机的火警警报。机组关闭右发动机,并于 17:04 返回鹿儿岛机场,成功进行单引擎着陆。机上共有 90 名人员,包括机长 (PIC)、副驾驶、9 名乘务员和 79 名乘客,无人受伤。飞机� 受到轻微损坏。起飞后,跑道旁的草地着火了。 1.2 重大事故调查概要 1.2.1 调查机构 2005 年 12 月 1 日,航空和铁路事故调查委员会 (ARAIC) 为该重大事故任命了一名主管调查员和两名调查员。针对这起重大事故,任命了一名专家顾问,负责调查以下事项