抽象的氘融合反应以14.1 MeV中子的形式产生能量,因此,融合反应器成分将暴露于高能量中子辐照的情况下,同时也受到热,机械和磁负荷的影响。暴露于中子辐射会带来许多后果,包括肿胀和尺寸变化,与等离子成分中发生的峰值瞬态热变形相当。辐照还以强烈的非线性方式动态改变了各种热机械特性,温度,应力和肿胀。有关跨越设计参数空间的中子暴露影响的实验数据非常稀疏,这突出了计算机模拟的相关性。在这项研究中,我们探讨了体力/表面牵引方法与特征性形式主义之间的等效性,用于治疗各向异性辐射引起的肿胀。我们发现,用于有限元方法(FEM)模拟的商业和大规模并行的开源软件都适合评估中子暴露对机械载荷反应器组件的影响。我们证明了辐射,辐射肿胀和导热率的降解的两个主要影响如何影响ITER TOKAMAK分流中应力和温度的分布。表征肿胀幅度和治疗模型的明显不确定性表明,基于目前可用的数据,只能给出反应堆成分中最受辐射的反应堆组件中发生的压力估算。
抽象的骨髓基质/干细胞代表了一个静止的细胞群,该细胞种群随着年龄的增长和响应损伤,维持骨骼质量和修复而补充成骨细胞骨形成细胞库。在体内体外和骨形成的基质/干细胞分化的有效介质是物理负荷,但仍不清楚负载诱导的骨形成是否需要对这些常驻基质/干细胞的成骨分化。因此,在这项研究中,我们利用瘦素受体(LEPR)来识别和追踪骨髓基质细胞对体内骨骼的机械加热的贡献。十二周龄的LEPR-CRE; TDTOMATO小鼠接受以11 n峰值负载的压缩胫骨负载,用于40个循环,每隔一天,每天持续2周。组织学分析表明,LEPR-CRE; TDTOMATO +细胞在血管周围围绕围绕骨骼出现,并将骨表面填充为衬里细胞或成骨细胞,然后再经历骨细胞生成。lepr-cre; tdtomato +基质细胞在骨髓中随着年龄的增长而增加,但不遵循胫骨压缩负荷的应用。机械载荷会引起骨骼质量和骨骼锻炼参数的增加,但不会引起LEPR-CRE的增加; TDTOMATO +成骨细胞或成骨细胞。为了研究LEPR细胞中的腺苷酸环化酶6(AC6)是否有助于这种机械适应性反应,LEPR-CRE; TDTOMATO小鼠被进一步交叉
聚合物基复合材料 (PMC) 因其优良的性能和较高的强度重量比而广泛应用于风能行业的主要承重部件[1]。然而,制造这种复合材料仍然是一项艰巨的任务。随着固化的进行,成分基质的化学流变和热机械性能会发生变化。化学收缩、放热产热和成分材料性能不匹配等多种多物理现象进一步影响原位基质响应,并导致制造过程中残余应力的积累、变形和损坏[2-9]。这些残余应力对复合材料性能的改变程度尚不完全清楚。基于准确而全面的材料表征的过程建模模拟可以填补这一知识空白。由此产生的过程模型可用于优化复合材料制造,以提高风能应用复合部件的性能。过程建模利用强大的计算分析工具,能够准确预测复合材料在受到各种热机械载荷时的微尺度响应[2-8,10-16]。许多基于航空级复合材料的计算研究报告了现象学和本构关系,以预测基质固化的演变[17],估计工艺引起的残余应力产生[18-27],并评估其对加工复合材料性能的影响[3-6、8、10、11、28]。然而,由于缺乏完整的固化和温度相关材料属性数据集,此类研究通常依赖室温数据或采用确定性基质属性进行分析。因此,
摘要 利用拉曼光谱、差示扫描量热法、温度调制差示扫描量热法、介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质由热固化乙氧基化双酚 A 二甲基丙烯酸酯获得,而液体电解质由基于乙基咪唑阳离子 [C 2 HIm] 和双(三氟甲烷磺酰基)酰亚胺 [TFSI] 阴离子的质子离子液体组成,掺杂有 LiTFSI 盐。我们报告称,受限液相表现出以下特征:(i)结晶度明显降低;(ii)弛豫时间分布更宽;(iii)介电强度降低;(iv)在液体到玻璃化转变温度 (T g ) 下协同长度尺度降低;和 (v)局部 T g 相关离子动力学加速。后者表明两个纳米相之间的界面相互作用较弱,而几何限制效应较强,这决定了离子动力学和耦合的结构弛豫,从而使 T g 降低约 4 K。我们还发现,在室温下,结构电解质的离子电导率达到 0.13 mS/cm,比相应的本体电解质低十倍。三种移动离子(Im +、TFSI - 和 Li +)对测量的离子电导率有贡献,从而隐性降低了 Li + 的迁移数。此外,我们报告称,所研究的固体聚合物电解质表现出将机械载荷转移到结构电池中的碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化的
骨形成是一个复杂的过程,涉及许多不同细胞类型的协调活性,包括成骨细胞和骨细胞。骨膜是结缔组织的致密膜,覆盖骨骼外表面,对于骨组织的生长,修复和维持至关重要。本研究的目的是总结骨膜从青春期到成年和老年的骨骼形成的贡献。这是使用PubMed电子互联网数据库的叙事文献综述。搜索基于关键字“骨膜骨形成”。纳入标准是临床前或临床研究,评估了骨膜在骨形成中的作用。非英语研究被排除在外。原始搜索提供了126篇发表论文。在包含和排除标准之后,我们终于接受了20篇文章以进行当前的审查。检查了纳入研究的参考列表后,添加了14项研究,留下34项研究进行本综述。在整个寿命中,骨膜骨形成发生动态变化。在青春期,骨膜具有高度成骨,并积极地有助于骨骼的快速生长。成年后,它在维持骨强度和适应机械载荷方面起着作用。在成年期,骨膜继续提供骨基细胞的来源,这有助于骨骼重塑和修复的持续过程。在更高级的年龄中,骨膜对激素和细胞因子的反应在骨形成方面降低;但是,可以保留骨膜细胞的成骨分化的能力。
通过茎/接头区域控制微管相关蛋白的含力特性:来自NDC80复合体Ilya B. Kovalenko的见解俄罗斯莫斯科的莫斯科州立大学Lomonosov;中国深圳市MSU-BIT大学B深圳; C俄罗斯莫斯科物理学药理论理论问题中心。*应将通信发送至p.s.o和n.b.g(orekhov_p@smbu.edu.cn,ngudimch@gmail.com)在机械载荷下许多微管相关蛋白(MAPS)功能。在其中,运动蛋白和被动耦合器将微管与其他细胞骨骼细丝,膜结构和不同的支架联系起来,以实现细胞形状的变化,运动和其他重要过程。NDC80的键动力学复合物将力从微管拆卸到细胞分裂期间的染色体运动。最近,与沿正端方向拉动相比,当朝着微管的负末端拉动时,该复合物已被证明可以更容易从微管脱离。在这里,我们使用了粗粒的分子动力学和布朗动力学模拟来解释方向载荷对从微管的NDC80复合物解开的不对称效应,然后将我们的发现概括为其他地图。我们发现,由朝向微管的正端倾斜的NDC80的僵硬茎产生的杠杆臂对于这种复合物的不对称解开至关重要,类似于Dynein的络合物。,EB蛋白,微管交联PRC1和驱动蛋白预计缺乏明显的解体不对称性,这是由于它们几乎垂直于微管壁上的垂直锚固,或者是由于其接头区域的较高灵活性与微管结构域紧密相关。因此,我们的研究突出了地图的一些设计原理,并解释了它们的远端部分如何赋予,调节或消除解开外部载荷方向的依赖性。此信息加深了我们对载荷特性和各种图的功能的理解,并可能指导具有预定义机械特性的合成蛋白系统的设计。
热电设备将热量转化为电能,不会产生温室气体排放,并有可能作为可穿戴设备的能源。目前的努力重点是设计既具有高转换效率又具有机械灵活性的材料。半赫斯勒材料(例如 TiNiSn)表现出良好的化学稳定性和热电效率,但它们固有的脆性对柔性设备的应用构成了挑战。在这里,TiNiSn 薄膜在室温下通过直流磁控溅射沉积,以研究它们对柔性设备应用的弯曲响应。因此,考虑了不同的基材:Si、Kapton、丝绸和打印纸,而 Si 被用作参考。分别采用能量色散 X 射线光谱和广角 X 射线散射分析沉积薄膜的成分和结构。通过扫描电子显微镜检查薄膜形态。此外,还采用密度泛函理论 (DFT) 探索柔性基板与非晶态 TiNiSn 之间的界面,并计算柯西压力,这是延展性/脆性行为的关键指标。非晶态 TiNiSn 薄膜对柔性 Kapton、丝绸和纸基板表现出良好的粘附性。施加机械载荷,即弯曲至 154 ◦,以评估裂纹形成,仅在 78 ◦ 和 154 ◦ 处出现少量裂纹,从而表明具有一定程度的柔性。DFT 数据支持这些发现,显示非晶态 TiNiSn 与柔性基板单体之间的粘附强度中等。计算出的柯西压力为 30 GPa,表明 TiNiSn 在非晶状态下具有延展性。因此,替代其他耗时的合成方法、消除对高温的需求以及提供对各种基板具有良好粘附性的无毒且经济高效的材料是非晶态 TiNiSn 薄膜成为柔性热电装置的良好候选材料的原因。
第七届复合材料疲劳与断裂研讨会于 1997 年 5 月 7—8 日在密苏里州圣路易斯举行。此次研讨会由 ASTM 复合材料委员会 D-30 和 ASTM 疲劳与断裂委员会 E-8 主办。研讨会的主要目的是为复合材料疲劳与断裂新进展提供一个展示和讨论的平台。特别要求提交描述复合材料技术以下领域实验和分析研究的论文:失效机理、无损评估、环境影响、预测方法、测试方法开发和影响。五个分会场共计展示 21 篇论文。会议由 NASA 兰利研究中心的 AT Nettles 和 MK Cvitkovich、Alient Tech Systems 的 D. Cohen、美国陆军导弹司令部的 JE Patterson、阿拉巴马大学亨茨维尔分校的 MD Lansing、南伊利诺伊大学卡本代尔分校的 T. Chu 和 MERL 的 RH Martin 主持。在研讨会期间,TK O'Brien 被授予 Wayne Stinchcomb 纪念奖。根据研讨会期间的演讲评估结果,MK Cvitkovich 被授予研讨会最佳论文演讲奖。复合材料用于许多商业、军事和航空航天结构。这些应用大多涉及循环载荷、异物冲击或热机械载荷。优化这些结构的设计需要全面表征复合材料对各种载荷情景的响应。经济有效的表征涉及分离特定感兴趣现象的测试方法和可以将测试方法结果与实际结构行为相关联的模型的组合。本卷中的论文讨论了复合材料疲劳和断裂行为的许多重要方面。本卷中的论文分为疲劳和断裂、环境考虑、影响和展望部分。这些论文包括关于聚合物、金属和陶瓷基复合材料的论文。疲劳和断裂部分包含与微观结构效应、损伤、预测工具和测试方法开发有关的论文。环境考虑部分重点关注温度和其他环境因素对复合结构长期耐久性的影响。冲击部分论文讨论了冲击响应、损伤形成以及使用 NDE 技术作为预测工具。最后,展望部分提供了复合材料的艺术视角。
第七届复合材料疲劳与断裂研讨会于 1997 年 5 月 7-8 日在密苏里州圣路易斯举行。会议由 ASTM 复合材料委员会 D-30 和 ASTM 疲劳与断裂委员会 E-8 赞助。研讨会的主要目的是提供一个论坛,介绍和讨论复合材料疲劳和断裂的最新发展。特别要求提交描述复合材料技术以下领域的实验和分析研究的论文:失效机制、无损评估、环境影响、预测方法、测试方法开发和影响。五个会议共提交了 21 篇论文。会议由美国宇航局兰利研究中心的 A. T. Nettles 和 M. K. Cvitkovich、Alient Tech Systems 的 D. Cohen、美国陆军导弹司令部的 J. E. Patterson、阿拉巴马大学亨茨维尔分校的 M. D. Lansing、南伊利诺伊大学卡本代尔分校的 T. Chu 和 MERL 的 R. H. Martin 主持。在研讨会期间,T. K. O'Brien 被授予 Wayne Stinchcomb 纪念奖。根据研讨会期间的演讲评估结果,M. K. Cvitkovich 被授予研讨会最佳论文演讲奖。复合材料用于许多商业、军事和航空航天结构。这些应用大多涉及循环载荷、异物冲击或热机械载荷。优化这些结构的设计需要全面表征复合材料对各种负载场景的响应。具有成本效益的表征涉及分离特定感兴趣现象的测试方法和可以将测试方法结果与实际结构行为相关联的模型的组合。本卷中包含的论文涉及复合材料疲劳和断裂行为的许多重要方面。本卷中包含的论文分为疲劳和断裂、环境考虑、影响和展望部分。这些论文包括有关聚合物、金属和陶瓷基复合材料的论文。疲劳和断裂部分包括与微观结构效应、损伤、预测工具和测试方法开发有关的论文。环境考虑部分重点关注温度和其他环境因素对复合结构长期耐久性的影响。最后,“透视”部分提供了复合材料的艺术视角。在“影响”部分,论文讨论了影响响应、损伤形成以及使用 NDE 技术作为预测工具。
项目详细信息:该项目将使用光学非线性显微镜中的高级方法来探讨生物组织如何随着时间的推移对机械负荷做出反应。再生医学的跨学科领域坐落在现代医疗保健的先锋队。这种不断增长的全球研究工作旨在开发修复,更换或再生受损细胞和组织的方法。这个领域利用了人体的自然治愈能力,同时整合了生物学,工程和物理学的新兴进步。下背部疼痛是多年来全球残障人士多年的主要原因。这种情况通常与椎间盘的变性有关。在过去的二十年中,对修复椎间盘损坏的再生医学方法的基本研究已经看到了巨大的增长。然而,迄今为止,很少有再生疗法已经发展为人类试验,而且没有人表现出成功。在该领域的进步一个主要障碍是对天然椎间盘组织的机械生物学的有限理解,并且缺乏用于新再生疗法的成本和时间有效筛选方法。更具体地,当前的再生测试方法经常对正在测试的样本具有破坏性。这禁止至关重要的纵向研究,该研究跟踪单个样本如何随着时间的流逝而对不同的机械和生化提示响应。该项目将通过在非线性光学显微镜中应用新方法和现有方法直接针对该障碍,以连续监测椎间盘样品中的显微镜变化。在这个项目中,我们利用了生物样品非线性显微镜和椎间盘机械生物学的内部内部专业知识。该项目将使用埃克塞特大学生物物理学组的研究级非线性显微镜组合来纵向研究椎间盘及其对复杂3D机械载荷模式的响应。非线性显微镜涉及使用超快速脉冲激光系统在要成像的样品中激发非线性光学响应。当两个或多个光子以相同的位置和时间到达样品时,它们可以将能量结合起来,以激发诸如刺激的拉曼散射和谐波产生之类的异国情调过程。通过检测这些过程发出的光子,揭示了对样品的微观结构和生物化学的强大见解。随着时间的推移,持续监测组织和构造的前所未有的能力将洞悉许多基本问题,例如物理环境(例如流体压力)影响天然和合成构建体。这些见解将使我们对疾病和变性的开始和进展以及在植入前如何最佳地“启动”再生疗法的理解。此外,非破坏性监测将显着加速再生疗法的优化,从而导致成本降低和增加吞吐量。这项研究将对从事再生医学的公司产生极大的兴趣,我们将利用现有的行业联系来促进我们的发现并鼓励参与。项目时间表1-6:归纳和
