• 将机翼前缘向后掠,无论是后掠翼还是三角翼,并减小外翼部分的迎角,使其作用更像传统的尾翼稳定器。如果沿着外翼部分的翼展逐渐这样做,则称为翼尖后掠。机翼的外翼部分现在充当传统的尾翼,在平飞时,飞机应进行调整,使翼尖不产生任何升力:它们甚至可能需要提供一点下推力。这会降低机翼的整体效率,但对于许多设计(尤其是高速设计)而言,与传统稳定器相比,阻力、重量和成本的降低可以抵消这一影响。这种方法是由英国飞行员 JW Dunne 在 20 世纪初开发的,但直到喷气时代才得到广泛使用。自 Dunne 以来,这种方法通过使用低或零俯仰力矩翼型得到了增强,例如在 Horten 系列滑翔机和战斗机中看到的。
可变马赫数爬升预测中使用的诱导阻力系数 [Eq (7.34e)] 阻力系数 (Para.5.1) 升力引起的阻力系数(诱导) [Eq (6.12a)] 零升力下的波阻力系数 [Eq (6.17a)] 零升力阻力系数 [Eq (6.17b)] 波阻力系数函数 [Eq (6.17b)] 爬升条件下的有效零升力阻力系数 [Eq (6.15)] 受阻着陆时的有效零升力阻力系数 [Eq (6.16b)] 升力系数 (Para.5.1) 进近升力系数 (Para.6.2.4) 巡航升力系数 (Para.6.2.4) 大迎角时小展弦比机翼的最大升力系数 (Para.6.2.5.2 和表 6.2) 低速时小展弦比机翼的最大升力系数 (第6.2.5.3 和表 6.2) 机动时可用的最大升力系数 (第6.2.4) 最大升力系数 (第6.2.4) 最小总阻力时的升力系数 [Eq (7.14b)] 起飞脱粘状态下的升力系数 (第6.2.4) 俯仰力矩 c6 系数 (第5.1)
飞行由奥托·利林塔尔 (Otto Lilienthal) 在 1891 年左右完成,飞机的运动仅通过移动飞行员的身体来控制,即重新定位重心,从今天的角度来看,这很难被视为 FCS。奥托·利林塔尔 (Otto Lilienthal) 也首次尝试通过偏转控制面来控制飞机运动 [1]。利林塔尔滑翔机的控制系统显然是作为纯机械组件设计的。例如,副翼控制面是机翼的末端部分,可以向下包裹以改变机翼的翼型和机翼弯曲部分的攻角,从而增加机翼一部分的升力。表面的控制部分通过一组电线连接到由飞行员致动的环上。这种布局随后被所有其他飞机制造商采用并进一步发展。利林塔尔的环变成了一根棍子,控制面与翼身分离以便于移动。然而,机械连接组件的演变并不那么显著。尽管在某种程度上比几根电线和滑轮复杂得多,但驾驶舱控制装置和控制面之间的机械连接如今在所有小型飞机中都很常见。
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
数字设计工具可以帮助确定设计和架构、工程以及电气、机械系统和物理域的范围,以及它们应该如何连接。建模(由航空航天专家设计)可以帮助优化和定义机身、油箱和机翼的最有效配置,预测最佳材料选择,并设计电气、电子和机械部件的集成。如果提供明确的输入标准,人工智能 (AI) 也可以帮助提出最佳设计,从而减少错误开始的次数和制作早期物理原型的需要。
桥梁的抖振、颤振和倒塌、高层建筑和风力涡轮机叶片的流体激励振动以及飞机机翼的颤振等现象。FSI 分析对于各种飞机部件(尤其是机翼)的高效轻量化结构非常重要。在这个项目中,我们设计了一个缩小的矩形平面机翼模型,并希望对机翼进行静态分析,以确定作用于机翼的空气动力、应力和各种模式的频率。随后,我们在耦合模式下进行了分析,并将其与之前获得的结果进行了比较,以观察流动模式以及当机翼被视为柔性时结构的行为方式。关键词:流体结构相互作用、CFD、耦合、机翼、柔性。1.引言 流体结构相互作用是流体动力学和结构力学定律之间的多物理场耦合。FSI 现象的特点是可变形或移动的物体与周围流体之间的相互作用。这些相互作用可以是稳定形式,也可以是振荡形式。当结构存在于流体流动中时,流体流动会对固体施加应力和应变,这些力会导致结构变形。产生的变形可能大或小,具体取决于流动的特性,例如压力和速度。流体引起的固体结构变形反过来又会影响流体的流动和压力场,变形会导致流动特性的变化,因此流体结构相互作用是流体动力学和结构力学之间的耦合。
大峡谷州立大学工程学院,美国密歇根州大急流城 49504 收稿日期:2015 年 2 月 27 日 / 接受日期:2015 年 4 月 16 日 / 发表日期:2015 年 6 月 30 日。摘要:CFD(计算流体动力学)紧随 CAD 和 FEA(有限元分析)的潮流,进入本科教育,尤其是随着商用代码的最新进展。它很快就会成为新工程毕业生的必备技能。CFD 被作为实验的一部分添加到大三流体力学课程的实验中。目标是向学生介绍 CFD 作为一种分析工具,并支持课程的理论概念。学生被要求完成风洞中机翼的实验二维研究,使用 CFD 模拟流动,并使用 CFD 预测气动升力以及实验获得的压力分布。此外,他们必须将他们的结果与所研究机翼的已发表数据进行比较。介绍了课程、风洞测试和 CFD 模拟的详细信息。讨论中使用了学生的工作样本。学生成功完成了实验室活动,学习目标得到了很好的实现。该实验室的宝贵成果之一是学生有机会整合多种流体力学分析工具并了解每种工具的极限。CFD 还增强了实验室活动的学习,并提高了学生对该学科的兴趣。关键词:本科教学、计算流体力学、实验流体力学。1. 简介
摘要。本文介绍了 MH114 高升力翼型的多目标优化。我们寻求一组帕累托最优解,使翼型升力最大化,阻力最小化。由于几何不确定性,升力和阻力被认为是不确定的。概率气动力值的不确定性量化需要大量样本。然而,由于 Navier-Stokes 方程的数值解,气动力的预测成本很高。因此,采用多保真替代辅助方法将昂贵的 RANS 模拟与廉价的潜在流量计算相结合。基于多保真度替代方法使我们能够在不确定的情况下经济地优化机翼的气动设计。