该项目探索了全碳纤维增强聚合物无人机 (UAV) 的商用飞机的经典机翼结构。它是多个研究飞机不同部件的小组合作工作的一部分。本报告的目的是介绍更环保、更高效的 2:1 版 Skywalker X8 内翼结构的设计。为了使飞机尽可能高效,结构需要轻量化。首先使用 XFLR5 近似计算负载,并进行初步设计。然后使用 Ansys Static Structural 程序中的有限元分析 (FEA) 对该设计进行测试。测试的材料是碳纤维/环氧预浸料。机翼的最终设计重 3.815 公斤,由一根翼梁和 1 毫米厚的蒙皮组成。整机重量(包括其他研究小组研制的推进系统和翼尖鲨鳍小翼)为20.262千克,升阻比也经过计算,得出最有效的迎角在2-3°左右。
省级机构的主要职能(在这种情况下实际上是分支机构)是根据年度工程计划实际在高速公路和道路上实施工程。所有在主要道路上的工作都是通过合同执行的,并由顾问以及省级机构的人员进行监督。省级机构的另一个职能是报告工程的物理和财务进步。随后,省级机构编制的这些报告将通过区域办公室每月发送到主要的道琼斯工业总部。此加上上面的段落描绘了区域办公室和典型地区/省级设置的省级办公室,因为此安排适用于向各自地区办事处报告的所有省份。
摘要 机翼结构的刚度方向已成为飞机设计优化的一部分。A350 XWB 和波音 787 等飞机主要由此类复合材料组成,其刚度方向可以优化。为了进行这种刚度优化,这项工作的目的是修改和优化线性应力-应变关系。因此,胡克定律被多线性公式取代,以分析机翼结构上的任何非线性弹性结构技术。用于研究非线性行为的机翼结构是从中程和远程飞机配置中推导出来的。这些机翼采用扩展梁法进行分析,并与 VLM 解决方案相结合以计算气动弹性载荷。所提出的梁法能够分析任何多线性机翼结构技术。递减的结构行为显示出减少弯矩的良好潜力,而弯矩是结构重量的主要驱动因素之一。
本研究旨在通过控制复合机翼结构元件的屈曲行为来设计新型可定制且有效的机制,以供将来的变形应用。与传统的抗屈曲设计不同,我们的想法是通过使用非线性后屈曲响应来控制刚度变化,从而重新分配机翼结构中的载荷,从而接受这种内置不稳定性。为了实现所需的多稳态配置,通过使用点、面积和最大位移约束来抑制平面外屈曲变形,研究了三种屈曲驱动机制。首先在复合板上对所提出的机制进行数值研究,然后将其集成以控制简化的薄壁复合翼盒的扭曲。所提出的机制提供了多稳态配置的有效设计机会,并展示了通过控制结构部件中的屈曲行为来实现复合机翼变形的潜力。
本研究旨在通过控制复合机翼结构元件的屈曲行为来设计新型可定制且有效的机制,以供未来的变形应用。与传统的防屈曲设计不同,我们的想法是通过使用非线性后屈曲响应来控制刚度变化以重新分配机翼结构中的载荷,从而接受这种内在的不稳定性。为了实现所需的多稳态配置,通过使用点、面积和最大位移约束来抑制平面外屈曲变形,研究了三种屈曲驱动机制。首先在复合板上对所提出的机制进行数值研究,然后将其集成以控制简化的薄壁复合翼盒的扭曲。所提出的机制为多稳态配置提供了有效的设计机会,并展示了通过控制结构部件的屈曲行为实现复合机翼变形的潜力。
摘要。已经开发了两种分析颤振解决方案方法来优化二维和三维飞机机翼结构,其设计标准基于气动弹性不稳定性。第一种方法使用二维机翼模型的开环结构动力学和稳定性分析,以获得优化过程的颤振、发散和控制反转的临界速度。第二种方法涉及使用假定模态技术的三维机翼结构颤振解决方案,并有效地应用于基于颤振标准的气动弹性优化。该颤振解决方案采用能量方程和 Theodorsen 函数来计算气动载荷,并且在设计变量方面是完全参数化的,这些设计变量是锥度比、后掠角、弹性和剪切模量。由于颤振解决方案需要弯曲和扭转固有频率,因此还分析了飞机机翼的自由振动分析。 AGARD 445.6 机翼模型在马赫数为 0.9011 时的颤振解分析结果与文献中的实验结果相符。接下来,将三维颤振代码与优化框架相结合,对 AGARD 445.6 进行基于颤振的优化,以最大化颤振速度。
1.1 飞行历史 .......................。。。。。。。。。。。。。。。。。。。。。。。。........1 1.2 人身伤害 .............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.3 飞机损坏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。......................2 1.4 其他损害。.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.5 人员信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.5.1 船长 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.5.2 副驾驶。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.6 飞机信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 1.6.1 机翼结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.6.2 维护信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.6.2.1 公司右翼维修记录。。。。。。。。。。。.....................8 1.6.2.2 机翼主要维修和改造 .....。。。。。。。。。。。。。。。。。。。。。。。。.9 1.6.2.3 持续适航维护计划 .....................11 1.6.2.4 持续分析和监视系统计划 ....................11 1.6.2.5 老化飞机检查和记录审查 .。。。。。。。。。。。。。。。。。。。。。。。12 1.7 气象信息 ......................。。。。。。。。。。。。。。。。。。。。。。。13 1.8 助航设备 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 1.9 通讯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 1.10 机场信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.11 飞行记录仪。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14
本文介绍了亚音速单AFT发动机(Susan)Listabilitable研究工具(SARV)机翼结构的高级概述。为机翼的结构布局做出了唯一的设计注意事项,以包括电池的存储空间,分布式电动发动机以及在货物盒中托运机翼的要求。将讨论机翼结构开发过程,包括机翼内部结构设计演变,制造示范车辆的制造,机翼外霉菌线设计,机翼内部结构和机翼皮肤的整合,以及最终将机翼与机身结构集成。此外,将讨论机翼皮肤设计的开发,同时突出机翼皮肤制造示范面板以及用于材料表征的复合测试。
氢燃料飞机的推进系统结构与传统煤油燃料飞机不同,后者通常将燃料储存在机翼内。通过最大限度地减少热传递和降低油箱表面积与体积比来限制氢气蒸发的需求推动了球形或圆柱形油箱的普及。然而,油箱的定位可能是受空间限制和管理飞机重心需求的影响,这可能导致采用非球形油箱和不同的制造解决方案。油箱可以位于机身内(见图 4),也可以位于悬挂在机翼上的外部吊舱中。因此,以液氢为动力的飞机将拥有“干机翼”,为从根本上改变机翼结构和相关制造工艺创造了机会。还需要制造具有高隔热性能且重量轻的油箱的工艺。
本文提出了一种基于全局-局部建模方法的轻型结构多尺度优化策略。该方法应用于民用飞机的实际机翼结构。机翼的初步设计可以表述为一个约束优化问题,涉及结构不同尺度的若干要求。所提出的策略有两个主要特点。首先,问题以最一般的意义来表述,包括每个问题尺度所涉及的所有设计变量。其次,考虑两个尺度:(i)结构宏观尺度,使用低保真度数值模型;(ii)结构中观尺度(或组件级),涉及增强模型。特别是,结构响应在全局和局部尺度上进行评估,避免使用近似分析方法。为此,完全参数化的全局和局部有限元模型与内部遗传算法交互。只为结构最关键的区域创建精炼模型,并通过专用的子建模方法链接到全局模型。