图 1 显示了 EC135。该飞机实现了飞机结构和先进技术部件的最佳组合。其中最重要的项目是: 具有蛤壳门和单层地板的后装载能力 混合机身结构(复合材料、金属板) 具有长时间空运行能力的铝合金 MGB 被动隔振系统 [1] 自动控制的可变旋翼速度 [2] 具有数字电子发动机控制(FADEC)的双发动机配置 [3] 在 Turbomeca Arrius 2B(1)和 Pratt & Whitney PW 206 B 发动机之间进行选择 偏航 SAS(单缸)用于 VFR 操作,计划进行双/单飞行员 IFR 认证 [4] 具有高可见度的驾驶舱布局 现代 MMI 技术(Avionique Nouvelle) 无轴承主旋翼系统 具有抛物线叶尖和先进 DM-H3/H4 翼型的复合材料叶片 带不等距叶片的扇翼尾桨(Fenestron) [5]
与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是
摘要:腐蚀识别和修复是飞机维护中确保结构完整性的重要任务。关于机身搭接接头,通常,目视检查后会采用非破坏性方法,这非常耗时。大面积目视检查不仅存在主观性,而且腐蚀检测概率也存在差异,机身结构采用的多层结构加剧了这种情况。在本文中,我们提出了一种使用深度神经网络自动基于图像检测飞机结构腐蚀的方法。对于机器学习,我们使用一个数据集,该数据集包含来自波音和空客飞机不同搭接接头的 D-Sight 飞机检查系统 (DAIS) 图像。我们还采用迁移学习来克服飞机腐蚀图像的短缺。精度超过 93%,我们证明我们的方法检测腐蚀的精度与训练有素的操作员相当,有助于减少与操作员疲劳或培训不足相关的不确定性。我们的结果表明,我们的方法可以为航空航天工业的腐蚀监测专家和工程师提供支持,可能有助于实现基于条件的维护协议的自动化。
摘要 本文介绍了 F-35 的结构预测和健康管理系统。本文介绍了 F-35 计划,确定了关键的工业合作伙伴、当前的全球客户群,并强调了该计划的规模。然后,本文开始描述数据在系统中移动的方法,并将涉及数据跨越国界的问题以及该计划如何解决数据主权问题。本文的主体部分描述了该系统为满足严格的飞机结构完整性计划 (ASIP) 要求而提供的功能。本文深入介绍了机载硬件和软件功能,并简要说明了这些功能存在的原因,然后描述了系统记录的数据,最后描述了用于维护机身结构完整性的机外结构健康管理能力。本文还深入介绍了系统所采用的跟踪方法,并涉及系统所采用的功能如何在整个生命周期中得到开发和维护。本文最后解释了如何定制系统以满足特定客户要求,包括分析选项和用户可选择的方法来处理缺失数据。
通常使用拼接来保持机翼蒙皮的空气动力学表面整洁。机翼是飞机产生升力的最重要的部件。机翼的设计因飞机类型和用途而异。翼盒有两个关键接头,即蒙皮拼接接头和翼梁拼接接头。内侧和外侧部分的顶部和底部蒙皮通过蒙皮拼接连接在一起。内侧和外侧的前翼梁和后翼梁通过翼梁拼接连接在一起。蒙皮承受机翼中的大部分弯曲力矩,而翼梁承受剪切力。本研究对机翼蒙皮的弦向拼接进行了详细分析。拼接被视为在机翼弯曲引起的平面内拉伸载荷作用下的多排铆钉接头。对接头进行了应力分析,以预测旁路载荷和轴承载荷引起的铆钉孔处应力。应力是使用有限元法在 PATRAN/NASTRAN 的帮助下计算的。疲劳裂纹将出现在机身结构中高拉伸应力的位置。此外,研究了这些位置总是高应力集中的位置。结构构件的寿命预测需要一个疲劳损伤累积模型。各种应力比和局部的应力寿命曲线数据
1 BAE Systems,英国,iain.hebden@baesystems.com 2 BAE Systems,美国,Anthony.m.crowley@baesystems.com 3 Lockheed Martin,美国,wayne.black@lmco.com 摘要 本文介绍了 F-35 的结构预测和健康管理系统。本文介绍了 F-35 项目,确定了主要的工业合作伙伴、当前的全球客户群,并强调了该项目的规模。然后,本文开始描述数据在系统中移动的方法,并将涉及数据跨越国界的问题以及该项目如何解决数据主权问题。本文的主体部分描述了该系统为满足严格的飞机结构完整性计划 (ASIP) 要求所提供的功能。本文深入介绍了机载硬件和软件功能,并简要说明了这些功能存在的原因,然后介绍了系统记录的数据,最后介绍了用于维护机身结构完整性的机外结构健康管理功能。本文还深入介绍了系统采用的跟踪方法,并涉及系统在整个生命周期内如何开发和维护所采用的功能。最后,本文解释了如何定制系统以满足特定客户的要求,包括分析选项和用户可选择的方法来处理缺失数据。
课程编号 课程名称 AMNT 240 通用航空学与应用 是 是 AMNT 260 飞机电气系统理论 是 AMNT 265 AMNT 270 机身结构与应用 是 是 AMNT 271 机身系统与应用 是 是 AMNT 280 往复式发动机理论与应用 是 AMNT 281 涡轮发动机理论与应用 是 AMNT 416 航空维护管理:全球视角 是 是 ASCI 121 私人飞行员操作 是 ASCI 121L 飞行员知识测试准备 是 ASCI 202 航空科学概论 是 是 ASCI 254 航空立法 是 是 ASCI 260 无人驾驶飞行器与系统 ASCI 301 空中交通管制简介 ASCI 303 塔台与雷达空中交通管制与管理 是 ASCI 309 空气动力学 是 是 ASCI 316 运营业务无人驾驶航空系统方面 ASCI 317 旋翼机 是 ASCI 318 无人驾驶航空系统机器人技术 ASCI 322 飞机检查和定期维护计划 是 ASCI 327 全球环境下的航空劳动力管理 ASCI 357 飞行生理学 是 ASCI 378 直升机飞行环境 是 ASCI 388 直升机飞行计划 是 ASCI 401 机场发展与运营
空客在汉堡启用新的 A320 结构装配线 树立数字自动化新标准 #Airbus #A320 汉堡,2019 年 10 月 1 日——空客在汉堡启用了高度自动化的 A320 系列飞机机身结构装配线,展示了空客工业生产体系的演变。新工厂特别专注于制造 A321LR 的较长部件,拥有 20 台机器人、一种新的物流概念、激光测量自动定位以及数字数据采集系统。这些将进一步支持空客提高质量和效率的努力,同时为其工业生产体系带来更高的数字化水平。“通过采用一些最新技术和工艺,空客已经开始了在 A320 系列生产中树立新标准的旅程。这条新的机身结构装配线是 A320 系列产能提升的重要推动力。空客首席运营官 Michael Schoellhorn 表示:“提高自动化和机器人水平可以实现更快、更高效的制造,同时保持我们对质量的首要关注。”“鉴于 A320 系列的巨大成功和订单积压,我们正在采取必要措施,确保我们的生产系统能够与我们产品的卓越性相匹配,并能够满足客户对我们单通道飞机的需求。” 他补充道:“我们对汉堡的员工和工厂给予了高度信任和投资。我们现在需要履行对客户的承诺,同时确保整体竞争力。”对于初始段的组装,空客采用了一种模块化、轻型自动化系统,称为“Flextrack”,八个机器人在每个纵向接头上钻孔和沉头 1,100 到 2,400 个孔。在下一个生产步骤中,12 个机器人(每个机器人在七个轴上操作)将机身中段和后段与尾部组合成一个主要部件,每个轨道接头钻孔、沉头、密封和插入 3,000 个铆钉。除了使用机器人外,空客还在材料和零件物流中实施新方法和技术,以优化生产、改善人体工程学并缩短交货时间。这包括物流和生产水平的分离、以需求为导向的材料补给以及自动导引车的使用。汉堡结构装配工厂负责将单个机身外壳连接成段,以及将单个段最终组装到飞机机身。飞机部件在最终交付到法国、德国、中国和美国的总装线之前,会配备电气和机械系统。高效的 A320neo 系列(包括 A321)拥有天空中最宽的单通道客舱,采用了包括新一代发动机和鲨鳍小翼在内的最新技术,从第一天起,这些技术共同节省了 15% 以上的燃油和二氧化碳,到 2020 年将节省 20%,同时噪音降低 50%。迄今为止,A320neo 系列已获得来自 100 多家客户的 6,500 多份订单。
空客在汉堡启用新的 A320 结构装配线 树立数字自动化新标准 #Airbus #A320 汉堡,2019 年 10 月 1 日——空客在汉堡启用了高度自动化的 A320 系列飞机机身结构装配线,展示了空客工业生产体系的演变。新工厂特别专注于制造 A321LR 的较长部件,拥有 20 台机器人、一种新的物流概念、激光测量自动定位以及数字数据采集系统。这些将进一步支持空客提高质量和效率的努力,同时为其工业生产体系带来更高的数字化水平。“通过采用一些最新技术和工艺,空客已经开始了为 A320 系列生产树立新标准的旅程。这条新的机身结构装配线是 A320 系列产能提升的重要推动力。提高自动化和机器人水平可以实现更快、更高效的制造,同时保持我们对质量的首要关注,”空客首席运营官 Michael Schoellhorn 表示。“鉴于 A320 系列的巨大成功和订单积压,我们正在采取必要措施,确保我们的生产系统能够与我们产品的卓越性相匹配,并能够满足客户对我们单通道飞机的需求。” 他补充道:“我们对汉堡的员工和工厂给予了高度信任和投资。我们现在需要履行对客户的承诺,同时确保整体竞争力。”对于初始段的组装,空客采用了一种模块化、轻型自动化系统,称为“Flextrack”,八个机器人在每个纵向接头上钻孔和沉头 1,100 到 2,400 个孔。在下一个生产步骤中,12 个机器人(每个机器人在七个轴上操作)将机身中段和后段与尾部组合成一个主要部件,每个轨道接头钻孔、沉头、密封和插入 3,000 个铆钉。除了使用机器人外,空客还在材料和零件物流中实施新方法和技术,以优化生产、改善人体工程学并缩短交货时间。这包括物流和生产水平的分离、以需求为导向的材料补给以及自动导引车的使用。汉堡结构装配工厂负责将单个机身外壳连接成段,以及将单个段最终组装到飞机机身。飞机部件在最终交付到法国、德国、中国和美国的总装线之前,会配备电气和机械系统。高效的 A320neo 系列(包括 A321)拥有天空中最宽的单通道客舱,采用了包括新一代发动机和鲨鳍小翼在内的最新技术,从第一天起,这些技术共同节省了 15% 以上的燃油和二氧化碳,到 2020 年将节省 20%,同时噪音降低 50%。迄今为止,A320neo 系列已获得来自 100 多家客户的 6,500 多份订单。
1 引言 近年来复合材料被广泛应用于运输飞机的制造。复合材料在商用运输中的首次重大应用是空客 1983 年为 A300/310 飞机采用的全复合材料方向舵。1985 年,空客也在同样的型号中引入了复合材料垂直尾翼。随着 A300/310 的成功,空客为 A320 飞机引入了全复合材料尾翼结构。A320 飞机的复合材料重量占结构重量的 15%。1970 年代末,NASA 和波音、洛克希德、MD 等主要机身公司启动了 ACEE 计划。该计划的主要目标是通过使用复合材料来减轻机身结构重量。在 ACEE 计划中,B737 的尾翼被复合材料取代,MD 为商用运输飞机开发了全复合材料机翼,洛克希德为 L1011 设计了新的复合材料垂直尾翼和副翼。在美国,复合材料在民航客机上应用最为广泛的是B777,复合材料结构占B777结构重量的10%,B777的尾翼、地板梁、襟翼和外副翼均采用复合材料制造。空客和波音最近研制的民航客机的机身和机翼结构也采用了复合材料,A350和B787的复合材料重量比将超过50%,两款飞机的翼盒和机身结构均采用了复合材料。