摘要:航空工业面临着降低运营和维护成本的诸多挑战。降低这些成本的可能方法之一是引入无线传感器网络 (WSN)。WSN 已经在安全关键和非安全关键分布式系统中找到了各种应用。本文讨论了 WSN 在飞机结构健康监测中的应用。使用市场上可用的组件特别关注 WSN 的设计问题。关键词:无线传感器网络、飞机结构健康监测、微机电系统、基于状态的维护、传感器节点 介绍 飞机的重量直接影响运营成本。目前,飞机重量减轻一磅意味着每架飞机每年可节省 100 美元。航空工业在减重方面进行了许多创新。多年来,复合材料、混合材料和先进铝合金在机身中的占比大幅增加,实现了显著的重量优势。然而,由于保守的设计理念仍然盛行,复合材料、混合材料和先进铝合金的全部潜力(如材料允许量的大幅减少)尚未实现。必须提高对这些先进材料的疲劳、裂纹/分层识别/增长和损伤容限特性的评估信心。这将有助于减少当前飞机结构设计中的保守性,从而实现细长的飞机机身结构。在过去十年中,无线传感器网络 (WSN) 已成功应用于许多工程领域,例如:结构健康监测 (SHM)、工业应用、环境监测、交通管制、健康应用等。本文讨论了 WSN 在飞机结构健康监测中的应用。
1. 塞尔维亚贝尔格莱德军事技术学院 摘要:航空工业面临着降低运营和维护成本的诸多挑战。降低这些成本的可能方法之一是引入无线传感器网络 (WSN)。WSN 已经在安全关键和非安全关键分布式系统中找到了多种应用。本文讨论了 WSN 在飞机结构健康监测中的应用。特别关注了使用市场上现有组件的 WSN 设计问题。 关键词:无线传感器网络、飞机结构健康监测、微机电系统、基于状态的维护、传感器节点 介绍 飞机的重量直接影响运营成本。目前,飞机重量减轻一磅意味着每架飞机每年可节省 100 美元。航空工业在减轻重量方面进行了许多创新。多年来,机身中复合材料、混合材料和先进铝合金的比例大幅增加,实现了显著的重量效益。然而,由于保守的设计理念仍然盛行,复合材料、混合材料和先进铝合金的全部潜力尚未实现,因为材料允许量大幅减少。必须提高对这些先进材料的疲劳、裂纹/分层识别/增长和损伤容限特性的评估信心。这将有助于减少当前飞机结构设计中的保守性,从而实现细长的飞机机身结构。在过去十年中,无线传感器网络 (WSN) 已成功应用于许多工程领域,例如:结构健康监测 (SHM)、工业应用、环境监测、交通控制、健康应用等。本文讨论了 WSN 在飞机结构健康监测中的应用。
摘要:飞机维护给维护人员带来了相当大的挑战。这些人员每天都面临着时间压力、系统复杂性、反馈稀疏、工作空间狭窄等挑战。其中一些挑战导致了与飞机维护相关的事故和严重事件。然而,很少有正式的实证研究描述飞机维护对尼日利亚飞机事故和事件的影响。因此,本研究旨在探讨 2006 年至 2019 年与飞机维护相关的事件和 2009 年至 2019 年尼日利亚事故的促成因素,以更深入地了解航空业这一安全关键方面,提高相关利益相关者的认识并寻找可能的缓解因素。为了实现这一目标,使用维护因素和分析分类系统 (MxFACS) 和 Hieminga 的维护事件分类法对尼日利亚发生的事故报告和强制性事件报告进行了内容分析。在由主题专家评估数据输出后,使用评分者间一致性值来确定研究准确性。发生率最高的维护相关事件和事故归因于“拆卸/安装”、工作实践,例如“积聚污垢和污染”、“检查/测试”、“操作员和监管机构监督不足”、“未遵守程序”和“维护不正确”。为了确定这些结果的根本原因,通过调查咨询了维护工程师,以了解这些促成因素的根本原因。研究结果显示,过去十年中最常见的维护相关事故和严重事件是“与地形相撞”和“起落架事件”。导致事故的系统级故障最常见的是“发动机”和“机身结构”。对这些事故贡献最大的维护因素是“运营商和监管机构监督”、“检查不足”和“未遵守程序”。研究还强调,2006 年至 2019 年尼日利亚航空事故的最大因果因素和促成因素是“安装/拆卸问题”、“检查/测试问题”、“工作实践”、“工作近距离”、“润滑和维修”,所有这些都与其他国家其他研究人员的研究相对应。
ACCT 220S 计算机化会计 - 本课程在计算机化环境中应用会计原则和方法的要素。本课程强调使用专业会计软件包,例如:Peachtree 和 Quick Books。学生将在计算机环境中应用完整的会计循环。学生需要完成以下项目:商品销售、作业成本核算、工资单和服务会计。先决条件:ACCT 160S 或 ACCT 202S (3-0-3) SACC 261S 税务会计(ACCT 262 已被本课程取代)- 这是一门调查课程,包括联邦和州税收结构的要素、现行税法以及个人、合伙企业和公司的纳税申报表的准备。先决条件:ACCT 202S 和 ACCT 203S (3-0-3) SACC 271S 中级会计(ACCT 250 已被本课程取代)- 本课程包括财务报表编制和解释方面的高级培训,并对其各个组成部分进行单独分析。先决条件:ACCT 203S (3-0-3) 联合健康 (ALLH) ALLH 112S 病理学 I - 本课程向学生介绍疾病、肿瘤、液体和血液动力学疾病、身体系统病理学(重点是可通过手术治疗的疾病)以及所有身体系统疾病的研究。(2-1-3) ALLH 120S 基础科学复习 学生通过系统复习外科技术课程所需的一系列科学主题开始为国家认证考试做准备。学生既可以独立工作,也可以在监督下工作。(2-1-3) ALLH 124S 围手术期药理学和麻醉 - 本课程旨在向学习者介绍麻醉原理和患者的麻醉准备、麻醉给药和准备的方法、药剂和技术、麻醉监测设备和患者止血、麻醉并发症、药物计算、换算和剂量、一般术语在药物使用中的应用、药物和溶液的准备和管理,包括在手术患者护理中使用药物、围手术期患者的紧急情况。学生学习基本的患者监测并获得 CPR 认证 (2-1-3) ALLH 210S 医学术语 - 研究健康科学所有领域中使用的术语。重点放在基本医学词汇的构造和对与人体相关的各种词汇部分的理解上。(3-0-3) ALLH 230S 健康和疾病中的营养 - 本课程向学生介绍营养科学的范围及其通过正确使用食物促进良好营养的应用。将介绍营养原则,因为它们适用于所有年龄段的正常人以及患有某些病理状况的人的需求。(3-0-3) 航空维护技术 - 机身 (AMTA) AMTA 201S 木材、覆盖物和饰面 - 将研究经典机身结构
[1] E.H. Baalbergen, E. Moerlan, W.F.Lammen, P.D.Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] A.J.de Wit, W.F.Lammen, H.S.Timmermans, W.J.Vankan, D. Charbonnier, T. van der Laan, P.D.Ciampa (2019) 飞机供应链的协同设计方法:多级优化。NLR-TP-2019-202。[3] W.F.Lammen, P. Kupijai, D. Kickenweitz, T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。[4] E. Amsterdam, J.W.Wiegman, M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] F.P.Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020- 415。[6] F.P.Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] F.P.Grooteman, E. Lee, S. Jin, M.J. Bos (2019) 极限载荷系数降低。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[8] E. Amsterdam, F.P.Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。[9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳裂纹扩展速率的现象学模型。待提交。[10] W.J.Vankan, W.M.van den Brink, R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。[11] J.W.van der Burg, B.B.Prananta, B.I Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。[12] J. van Muijden, B.B.Prananta, R.P.G.Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans, B.B.Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。NLR-TP-2019-368。[15] L. Paletti, W.M.[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。[16] J.C. de Kruijk (2018) 使用机器人技术实现复合材料自动化制造可降低成本、交货时间和废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] W.M.van den Brink、R. Bruins、C.P.Groenendijk、R. Maas、P. Lantermans (2016) 复合热塑性水平稳定器扭力箱的纤维引导蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合格栅加固板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲会议上发表。[19] M.H.Nagelsmit、C. Kassapoglou、Z. Gürdal (2010) 一种用于提高损伤容限的新型纤维放置架构。NLR-TP-2010-626。[20] A. Clarke、R.J.C.Creemers, A. Riccio, C. Williamson (2005) 全复合材料耐损伤翼盒的结构分析与优化。NLR-TP-2005-478。
[1] EH Baalbergen、E. Moerlan、WF Lammen、PD Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] AJ de Wit、WF Lammen、HS Timmermans、WJ Vankan、D. Charbonnier、T. van der Laan、PD Ciampa (2019) 飞机供应链的协同设计方法:多层次优化。NLR-TP-2019-202。[3] WF Lammen、P. Kupijai、D. Kickenweitz、T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。 [4] E. Amsterdam、JW Wiegman、M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] FP Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020-415。[6] FP Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] FP Grooteman、E. Lee、S. Jin、MJ Bos (2019) 极限载荷系数降低。在 2019 年飞机结构完整性计划 (ASIP) 会议上发表。 [8] E. Amsterdam,FP Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。 [9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳中裂纹扩展速率的现象学模型。待提交。 [10] WJ Vankan、WM van den Brink、R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。 [11] JW van der Burg、BB Prananta、BI Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。 [12] J. van Muijden、BB Prananta、RPG Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans、BB Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。NLR-TP-2019-368。[15] L. Paletti、WM van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天中的增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。 [16] JC de Kruijk (2018) 使用机器人技术实现复合材料的自动化制造,降低成本、缩短交货时间和提高废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] WM van den Brink、R. Bruins、CP Groenendijk、R. Maas、P. Lantermans (2016) 复合材料热塑性水平稳定器扭力箱的纤维转向蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合材料格栅加筋板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲展会上发表。[19] MH Nagelsmit、C. Kassapoglou、Z.Gürdal (2010) 一种提高损伤容限的新型纤维铺放结构。NLR-TP-2010-626。[20] A. Clarke、RJC Creemers、A. Riccio、C. Williamson (2005) 全复合材料损伤容限翼盒的结构分析与优化。NLR-TP-2005-478。