摘要:适体功能化的生物传感器在监测复杂环境中的神经递质方面表现出高选择性。我们将纳米级适体修饰的纳米移液器传感器转化为检测体外和离体内源性多巴胺的释放。这些传感器采用具有纳米级孔(直径约 10 纳米)的石英纳米移液器,其用适体功能化,从而能够通过目标特定的构象变化选择性捕获多巴胺。多巴胺结合后适体结构的动态行为导致纳米孔内表面电荷的重排,从而导致可测量的离子电流变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们通过在生物环境中部署用非特异性 DNA 修饰的对照传感器以及多巴胺特异性传感器来进行差异生物传感。我们的研究结果证实了适体修饰的纳米移液器可用于直接测量未稀释的复杂流体,特别是在人类诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,传感器植入和急性脑切片中的重复测量是可能的,这可能是由于纳米级 DNA 填充孔内的受保护传感区域,最大限度地减少了非特异性干扰物的暴露并防止堵塞。此外,背外侧纹状体通过电刺激释放的内源性多巴胺的差异记录表明适体修饰的纳米移液器具有以前所未有的空间分辨率和减少的组织损伤进行体外记录的潜力。关键词:生物传感器、DNA、多巴胺、流体学、诱导多能干细胞衍生的神经元、纳米孔■简介
促进受损牙周组织的完全牙周再生,包括牙髓,牙周韧带和肺泡骨,是治疗牙周炎的挑战之一。因此,迫切需要探索牙周炎的新治疗策略。由干细胞产生的外泌体现在是干细胞疗法的有前途的替代品,其治疗结果与其爆炸细胞的替代效果相当。它在调节免疫功能,炎症,微生物群和组织再生方面具有巨大潜力,并且在牙周组织再生中表现出良好的影响。此外,牙周组织工程将外泌体与生物材料支架相结合,以最大程度地提高外泌体的治疗优势。因此,本文回顾了牙周再生中外泌体和外泌体复合支架的进度,挑战和前景。
本次研究分析的最古老的样本是从东京湾野岛贝冢(横滨市金泽区)出土的一只太平洋斑纹海豚,可追溯到大约 8,000 年前。研究发现,如果保存得当,即使在横滨这样炎热潮湿的环境中,DNA分子仍可以保留在这些古老的样本中。 在北海道东部的钏路地区,我们调查了两处遗址:东钏路贝冢(钏路市贝冢),其年代为绳文时代早期至中期;以及币舞遗址(钏路市币舞町),其年代为绳文时代晚期至后绳文时代。样本的年龄表明,东钏路贝丘的海豚捕鱼活动大约在 4,200 年前结束,之后经过 1,000 多年的间隔,直到大约 3,000 年前币舞遗址的海豚捕鱼活动才恢复(图 3)。此外,特别是在太平洋斑纹海豚中,东钏路贝冢和币舞遗址出土的个体之间几乎没有共同的线粒体单倍型,这表明从这两个遗址出土的太平洋斑纹海豚属于遗传上不同的群体。已知距今4200年前,全球范围内发生过一次突然变冷干燥事件(4200年前事件)。例如,气候变化被认为是古埃及王国灭亡和美索不达米亚阿卡德帝国覆灭的原因之一。据报道,在日本列岛,这种突然的降温导致了当时最大的定居点之一的三内丸山遗址(青森市)的废弃,并导致了礼文岛的植被大规模变化。本研究提出的海豚种群更替和钏路地区海豚捕捞的暂停也可能与此有关
•半导体是支持数字社会的重要基础,包括5G,大数据,人工智能,物联网,自动驾驶,机器人技术,智能城市和DX,并且是与经济安全直接相关的重要战略技术。 •除了对各个国家和地区的半导体公司的大规模支持外,我们还将加强对大学的研究和发展的支持。另一方面,与对半导体行业的支持相比,对学术界的支持是有限的。 •有必要促进全面和战略措施,例如与半导体制造,人力资源开发,促进行业 - 阿卡迪血症合作的研究和发展,以及尖端研究设备的开发。
1 carpine G,来自Ben M,Passory D,Carenal R,Barata F,Overi D等。令人难以置信的肝肝潜水>
胞嘧啶和5-甲基胞嘧啶的水解脱氨基驱动许多在人类癌症中观察到的过渡突变。脱氨基诱导的诱变中间体包括尿嘧啶或胸腺素加合物误导了鸟嘌呤。虽然存在多种方法来测量其他类型的DNA加合物,但胞质脱氨基加合物却带来了异常的分析问题,并且尚未开发出足够的测量方法。我们在这里描述了一种新型的杂化胸腺素DNA糖基化酶(TDG),该糖基化酶(TDG)由与胸腺糖基化酶在古细菌中发现的29个氨基酸序列组成,该序列是与胸腺素糖基化酶的催化结构域相关的29-氨基酸序列。使用定义的序列寡核苷酸,我们表明杂交TDG具有强大的失误选择性活动,以对脱氨酸u:g和t:g mistairs。我们进一步开发了一种将糖基酶释放的游离碱与oli-Gonucleotides和DNA分离的方法,然后是GC - MS/MS定量。使用这种方法,我们在第一次测量了尿嘧啶,u:g和t:g对的水平。此处介绍的方法将允许测量一类具有生物学上重要的脱氨酸胞嘧啶加合物类别的结构,持久性和修复。
摘要。食物浪费是一个重大的全球问题,导致土壤污染和温室气体排放。已经探索了解决此问题并减少对化学肥料的依赖,使用有效的微生物(EM)和脱水技术堆肥。这项研究旨在使用与脱水相关的食物浪费在不同阶段全面研究堆肥过程。细菌和真菌菌落是在两个系统中堆肥的早期,早期和成熟阶段测量的。结果表明细菌和真菌种群的趋势不同,中嗜性细菌主导了早期阶段,而在成熟阶段,系统2的嗜热细菌增加。真菌菌落数量随时间的降低。相关性分析表明,嗜嗜性细菌与真菌与pH和温度之间存在负相关性,而系统2中的嗜热细菌和真菌则显示出正相关。脱水的食物废物可增强细菌和真菌的生长,从而在特定的pH和温度条件下促进有效的堆肥。这些发现突出了在可持续废物管理实践中使用脱水食品浪费和EM的潜力,
摘要 - 由于技术的快速发展和开发,电子系统设计中的微型化已变得不可避免。由于较小的传热表面,热通量密度大大增加了热通量密度,因此对热管理能力提出了挑战。电子冷却中采用纳米流体似乎是实现更好的热量耗散的另一种方法。这项研究探讨了三元杂化纳米流体的可行性:Al 2 O 3:Sio 2在水中浓度不同的水中和混合物比例的水中,在蛇形冷却板中。在这项研究中,研究了0.01%的GO + Al 2 O 3:SIO 2,0.006%GO + Al 2 O 3:SiO 2和0.008%GO + Al 2 O 3:SIO 2的混合比为10:90和20:80(Al 2 O 3:Sio 2)。结果表明,与基础流体相比,纳米流体的0.01%GO + Al 2 O 3:SIO 2(10:90)纳米流体显示出最高增强的传热系数,高1.1倍。随后是0.008%GO + Al 2 O 3:SIO 2(10:90)和0.006%GO + Al 2 O 3:SIO 2(10:90),与基础流体相比,连续增强了1.03次和0.87倍的热传递系数增强。在混合比率的期限内,以10:90(Al 2 O 3:Sio 2)的表现高于20:80。为了评估采用的可行性,进行了优势比(AR)来测量热传递增强和压降效应。AR分析表明,在较低的雷诺,RE数字区域,0.01%GO + Al 2 O 3:SIO 2(10:90)三元杂交纳米流体被证明是最可行的,这是最可行的,这是由于热传递增强的压力较高。