摘要:保护物质中的量子相干性不受环境影响对于在量子技术中使用分子和材料以及开发增强光谱至关重要。本文展示了如何在光学腔的背景下用量子光修饰分子发色团,以产生具有可调相干时间尺度的量子叠加态,这些相干时间尺度比裸分子的相干时间尺度更长,即使在室温和浸入溶剂中的分子中也是如此。为此,我们开发了分子极化态的退相干率理论,并证明涉及这种混合光物质态的量子叠加可以比裸分子存活时间长几个数量级,同时保持光学可控性。此外,通过研究有损腔存在下的这些可调相干增强,我们证明它们可以使用当今的光学腔来实现。该分析提供了一种可行的策略来设计和增加分子中的量子相干寿命。
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
胞嘧啶和5-甲基胞嘧啶的水解脱氨基驱动许多在人类癌症中观察到的过渡突变。脱氨基诱导的诱变中间体包括尿嘧啶或胸腺素加合物误导了鸟嘌呤。虽然存在多种方法来测量其他类型的DNA加合物,但胞质脱氨基加合物却带来了异常的分析问题,并且尚未开发出足够的测量方法。我们在这里描述了一种新型的杂化胸腺素DNA糖基化酶(TDG),该糖基化酶(TDG)由与胸腺糖基化酶在古细菌中发现的29个氨基酸序列组成,该序列是与胸腺素糖基化酶的催化结构域相关的29-氨基酸序列。使用定义的序列寡核苷酸,我们表明杂交TDG具有强大的失误选择性活动,以对脱氨酸u:g和t:g mistairs。我们进一步开发了一种将糖基酶释放的游离碱与oli-Gonucleotides和DNA分离的方法,然后是GC - MS/MS定量。使用这种方法,我们在第一次测量了尿嘧啶,u:g和t:g对的水平。此处介绍的方法将允许测量一类具有生物学上重要的脱氨酸胞嘧啶加合物类别的结构,持久性和修复。
1 天津市成像与传感微电子技术重点实验室,天津大学微电子学院,天津 300072 2 天津大学电气与信息工程学院,天津 300072 3 东南大学信息科学与工程学院,毫米波国家重点实验室,南京 210096 4 西安电子科技大学电子工程学院,高速电路设计与电磁兼容教育部重点实验室,西安 710071 5 华为技术有限公司,上海 518129 6 伦敦大学学院电子与电气工程系,伦敦 WC1E7JE,英国 7 浙江大学信息与电子工程学院,浙江省微纳电子器件与智能系统重点实验室,杭州 310027
摘要:二维有机-无机卤化铅钙钛矿由于其光电特性(例如高太阳能转换效率和可见光区域可调的直接带隙)而引起人们的极大兴趣。然而,二维晶体结构中缺陷态的存在会影响这些特性,导致其带隙发射发生变化以及出现非线性光学现象。在这里,我们研究了缺陷态的存在对二维混合钙钛矿 (BA) 2 (MA) 2 Pb 3 Br 10 的非线性光学现象的影响。当两个脉冲(一个以 800nm 为中心的窄带泵浦脉冲和一个带宽为 800-1100nm 的超连续脉冲)入射到钙钛矿薄片上时,会发生简并四波混频 (FWM),其峰值对应于晶体中存在的缺陷态的能级。与非共振 FWM 过程中发生的虚拟跃迁相比,缺陷态的载流子寿命更长,这使得更多的电子能够被第二个泵浦光子激发,从而导致缺陷能级的 FWM 信号增强。随着薄片厚度的增加,双光子发光的猝灭现象也得到了观察,这归因于厚度较大时薄片内缺陷的存在增加。该技术展示了使用 FWM 检测晶体中缺陷能级的潜力,可用于各种光电应用。关键词:钙钛矿、非线性光学、材料、缺陷、荧光 ■ 简介
摘要:将苯并环丁烯改性倍半硅氧烷(BCB-POSS)和二乙烯基四甲基二硅氧烷-双苯并环丁烯(DVS-BCB)预聚物分别引入到由1-甲基-1-(4-苯并环丁烯基)硅环丁烷(4-MSCBBCB)和1-甲基-1-苯基硅环丁烷(1-MPSCB)聚合而成的含苯并环丁烯(BCB)单元的基质树脂P(4-MB-co-1-MP)中,制备出低介电常数(低k)硅氧烷/碳硅烷杂化苯并环丁烯树脂复合材料P(4-MB-co-1-MP)/BCB-POSS和P(4-MB-co-1-MP)/DVS-BCB。通过傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)研究了复合材料的固化过程。利用阻抗分析仪和热重分析仪(TGA)研究了不同比例的BCB-POSS和DVS-BCB对复合材料介电性能和耐热性的影响。复合材料的热固化可以通过BCB-POSS或DVS-BCB的BCB四元环与P(4-MB-co-1-MP)的BCB四元环的开环聚合(ROP)进行。随着BCB-POSS比例增加至30%,P(4-MB-co-1-MP)/BCB-POSS复合材料的5%热失重温度(T 5% )明显升高,但由于POSS中引入了纳米孔,介电常数(k)降低。对于P(4-MB-co-1-MP)/DVS-BCB复合材料,随着DVS-BCB比例的增加,T 5%和k略有升高。以上结果表明,BCB-POSS 比传统填料具有优势,可同时提高热稳定性并降低 k。
受二嵌段共聚物 (DBC) 丰富的相分离行为启发,二嵌段共聚物 (DBC) 和无机前体的协同自组装 (共组装) 可以实现具有所需尺寸的多种功能纳米结构。在采用聚苯乙烯嵌段聚氧化乙烯和 ZnO 的 DBC 辅助溶胶-凝胶化学方法中,通过狭缝模头涂层形成混合薄膜。打印纯 DBC 薄膜作为对照。进行原位掠入射小角度 X 射线散射测量,以研究薄膜形成过程中的自组装和共组装过程。结合互补的非原位表征,区分出几种不同的方式以描述从最初的溶剂分散到最终固化的薄膜的形态转变。组装途径的比较表明,建立纯 DBC 薄膜的关键步骤是球形胶束向圆柱形域的聚结。由于存在相选择性前体,溶液中圆柱形聚集体的形成对于混合膜的结构发展至关重要。墨水中预先存在的圆柱体阻碍了混合膜在随后的干燥过程中的域生长。前体降低了有序度,防止了 PEO 嵌段的结晶,并在混合膜中引入了额外的长度尺度。
功能性混合无机纳米材料因其在纳米技术应用中的表现而受到了极大的关注。[1]将多个纳米组分组合为杂种结构的组合产生了与成分不同的新集体特性。[1]杂交纳米结构不仅具有多功能特性,而且还可能引起界面粒子 - 粒子 - - 粒子相互作用引起的协同特性。[2]两个或多个组件的耦合产生杂交纳米结构,该纳米结构允许电子传输跨连接以改变局部电子结构。因此,粒子表面上的工程化学反应性取决于内部和外部接口的能力以及沉积颗粒在纳米支持上的粒径分布。[1,3]这些行为使它们通常在太阳能转化,催化和潜在的生物医学方法中具有潜在的应用,用于药物递送,生物成像和癌症治疗。[4-6]