摘要:手性氮杂环丙烷是天然产物和各种重要靶分子中发现的重要结构基序。它们是合成手性胺的多功能构建块。虽然催化剂设计的进步使得对映选择性氮杂环丙烷活化烯烃的方法成为可能,但简单且丰富的烷基取代烯烃带来了重大挑战。在这项工作中,我们介绍了一种利用平面手性铑茚基催化剂促进未活化烯烃对映选择性氮杂环丙烷化的新方法。这种转化表现出显着程度的功能基团耐受性,并显示出优于活化烯烃的优异化学选择性,从而提供了多种对映体富集的高价值手性氮杂环丙烷。计算研究揭示了一种逐步氮杂环丙烷化机制,其中烯烃迁移插入起着核心作用。该过程形成了有张力的四元金属环,并作为整个反应中的对映体和速率决定步骤。
Sijia Wu 1,2 , Qian Wang 2 , Jun Du 2 , Qingxuan Meng 2 , Yuhao Li 2, *, Yuqing Miao 2 , Qing
摘要:二维(2D)半导体过渡 - 金属二甲藻元化(TMDC)是激动人心的兴奋性物理和下一代电子设备的令人兴奋的平台,从而提出了强烈的需求,以了解其增长,兴奋剂和异质结构。尽管在固体源(SS-)和金属 - 有机化学蒸气沉积(MOCVD)中取得了显着进展,但仍需要进一步优化,以增强高度结晶的2D TMDC,并具有受控的掺杂。在这里,我们报告了一种混合MOCVD生长法,该方法结合了液相金属前体沉积和蒸气相机 - chalcogen的递送,以利用MOCVD和SS-CVD的优势。使用我们的混合方法,我们证明了WS 2的生长,具有从分离的单晶结构域到各种底物的连续单层膜的可调形态,包括蓝宝石,SIO 2和AU。这些WS 2膜表现出狭窄的中性激子光致发光线的宽度,低至27-28 MeV和室温迁移率最高34-36 cm 2 v-1 s-1。通过对液体前体组成的简单修改,我们证明了V掺杂WS 2,Mo X W 1-X S 2合金和面内WS 2 - MOS 2异质结构的生长。这项工作提出了一种有效的方法,可以在实验室规模上满足各种TMDC合成需求。关键字:金属 - 有机化学蒸气沉积,2D半导体生长,过渡金属二甲构代化,掺杂,合金,WS 2,MOS 2,MOS 2
这些和其他有吸引力的特点引起了人们对这种技术日益增长的兴趣,包括材料科学的基本方面和控制界面特性的化学方法。纳米材料合成方法和纳米制造技术的最新进展为具有极高界面面积和极小尺寸的化学传感器创造了机会,分别可以提高灵敏度和响应时间。以前的报告描述了独特的传感器类别,它们利用各种类型的纳米材料和设备架构进行有针对性的应用,活性材料包括有机半导体[3,4]、无机薄膜和纳米线[5–9]、碳纳米管[10]、石墨烯[11]和过渡金属二硫代化合物[12]。在所研究的广泛材料中,单晶硅及其衍生物尤其令人感兴趣,因为其具有优异、可重复和良好控制的电子特性,可实现卓越的性能和节能运行,并与互补金属氧化物半导体 (CMOS) 技术兼容,用于集成多路复用和信号处理。各种研究都表明了此类化学传感平台的用途,重点是制备、组装、界面工程、电气性能和应用。与其他纳米材料(例如石墨烯、过渡金属二硫属化物、黑磷)相比,这些纳米材料通常包含一系列不受控制的活性位点(例如空位、晶粒边界和缺陷),对基面传感产生不利影响,而现代方法可以常规形成单晶硅,质量优异,成本低,面积大,结构和材料特性近乎完美。[13] 受控生长和/或光刻
摘要:与聚合物复合材料中合成增强相关的环境挑战,例如非生物降解性和可回收性差,需要探索各种天然材料,尤其是从废物流中,以全面或部分替代此类增强。然而,这些天然纤维还提出了挑战,例如高吸水,低热稳定性和平均机械性能。为了避免这些问题,包含一种或多种类型的自然增强的天然纤维增强杂化复合材料正在增加研究兴趣。本文介绍了对天然纤维增强杂化复合材料的评论。综述了天然和合成纤维(杂化纤维)增强的热塑性和热热器。总结了纤维的特性以及所得的复合材料和加工技术。
图 3 ReRAM 特性的电极依赖性:(a) 50×50 μm 2 ,(b) 200×200 μm 2 。 5.结论我们利用 TiO x 作为电阻变化层制作了 ReRAM,并评估了其特性。在本次创建的条件下,没有观察到复位操作。这被认为是因为在复位操作过程中,由于氧气的释放,灯丝没有断裂。比较电极尺寸,50×50 μm2 的较小元件与 200×200 μm2 的元件相比,可获得更优异的特性。这被认为表明了氧化退火过程中的尺寸依赖性。 6.参考文献 [1] A. Hardtdegen 等,IEEE Transactions on Electron Devices,第 65 卷,第 8 期,第 3229-3236 页 (2018) [2] Takeo Ninomiya,基于氧化物材料设计和可靠性建模的电阻式存储器量产,名古屋大学研究生院博士论文 (2016) [3] D.Carta 等,ACS Appl. Mater. Interfaces,第 19605-19611 页 (2016) [4] D. Acharyya 等,微电子可靠性。54,第 541-560 页 (2014)。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
宽带间隙(WBG)碱性晶酸盐透明氧化物半导体(TOSS)近年来引起了越来越多的关注,因为它们的高载流子迁移率和出色的光电特性,这些特性已应用于诸如Flat-Panel显示器等广泛的应用。然而,大多数碱性地球酸盐是由分子束外延(MBE)生长的,有关锡源的问题存在一些棘手的问题,包括带有SNO和SN源的波动性以及SNO 2源的分解。相反,原子层沉积(ALD)是具有精确的化学计量控制和原子尺度上可调厚度的复杂stannate钙钛矿生长的理想技术。在此,我们报告了la-srsno 3 /batio 3 perovskite异质结构异质集成在SI(001)上,该结构使用ALD种植的La掺杂的Srsno 3(LSSO)作为通道材料,并用作MBE生长的Batio 3(BTO)作为介电材料。反射性高能电子衍射和X射线衍射结果表明每个外延层的结晶度为0.62,全宽度最高(FWHM)。原位X射线光电子光谱结果证实,ALD沉积LSSO中没有SN 0状态。这项工作扩展了当前的优化方法,用于减少外在LSSO/BTO钙钛矿异质结构中的缺陷,并表明过量的氧气退火是增强LSSO/BTO异质结构的电容性能的强大工具。Besides, we report a strategy for the post-treatment of LSSO/BTO perovskite heterostructures by controlling the oxygen annealing temperature and time, with a maximum oxide capacitance C ox = 0.31 μF/cm 2 and a minimum low- frequency dispersion for the devices with 7 h oxygen annealing at 400 C. The enhancement of capacitance properties is primarily attributed to a在额外的异位过量氧气退火过程中,膜中氧空位的减少和异质结构界面中的界面缺陷。
摘要:保护物质中的量子相干性不受环境影响对于在量子技术中使用分子和材料以及开发增强光谱至关重要。本文展示了如何在光学腔的背景下用量子光修饰分子发色团,以产生具有可调相干时间尺度的量子叠加态,这些相干时间尺度比裸分子的相干时间尺度更长,即使在室温和浸入溶剂中的分子中也是如此。为此,我们开发了分子极化态的退相干率理论,并证明涉及这种混合光物质态的量子叠加可以比裸分子存活时间长几个数量级,同时保持光学可控性。此外,通过研究有损腔存在下的这些可调相干增强,我们证明它们可以使用当今的光学腔来实现。该分析提供了一种可行的策略来设计和增加分子中的量子相干寿命。