抽象的兰花(兰花科)是以其鲜花形状,颜色和香气归因于其高度美学价值而闻名的装饰植物。两种类型的混合兰花和吸引人的花朵,即phaenopsis的“牛皇后”兰花和树突状'Cheddi Jagan'的花朵在这项研究中使用了迷人的花朵,因为其花色的美丽。这项研究的目的是表征诱导花颜色的花色和CHS(Chalcone合酶)基因含量的形态。这项研究中使用的方法通过使用RHS(皇家园艺学会)的颜色图和分子分析,通过DNA基因组分离和GDNA的PCR扩增CHS基因特异性引物,分析了花朵的颜色。结果表明,使用p。通过RHS观察到紫色。'ox Queen'编码为深紫色粉红色(N73A)和d。'Cheddi Jagan'编码为强红色紫色(N72C)。CHS基因可以在p中扩增。'牛皇后'1,287 bp和d。'Cheddi Jagan'3,731 bp。在两个兰花中,放大的结果显示了具有保守域PLN03172和PLN03170的CHS基序。研究结果表明,兰花花的形态存在显着差异。紫色可以通过RHS观察到p。'ox Queen'编码为n73a和d。'Cheddi Jagan'编码为N73C。结果表明,根据Murray和Thomson的使用CTAB方法可以分离GDNA,并且CHS基因可以通过CHS引物可以扩增,从而产生1200 bp的p。'Cheddi Jagan'。'ox Queen'和2500 bp d。通过这项研究,预计将对未来的研究进行初步数据,这是通过编辑CHS基因中的CRISPR/CAS9基因组来形成杂色花的。这项研究旨在支持p。'牛皇后'和d。'Cheddi Jagan',使用CRISPR/CAS9技术专注于CHS基因。版权所有:©2024,J.热带生物多样性生物技术(CC BY-SA 4.0)
摘要:尽管最近取得了进展,但 CRISPR/Cas9 在多年生植物中的应用仍有许多障碍需要克服。我们之前在苹果和梨中使用 CRISPR/Cas9 的结果表明,在编辑赋予白化表型的八氢番茄红素去饱和酶 (PDS) 基因后,经常产生表型和基因型嵌合体。因此,我们的第一个目标是确定从原代转基因植物 (T0) 的叶子中添加不定芽再生步骤是否可以减少嵌合体。在从杂色 T0 系再生的数百个不定芽中,89% 是同质白化。此外,对其中 12 个再生系(RT0 为“再生 T0”系)的靶区序列的分析表明,99% 的 RT0 等位基因预测会产生截短的靶蛋白,67% 的 RT0 植物的异质性编辑谱比 T0 少。碱基编辑器是 CRISPR/Cas9 衍生的新型基因组编辑工具,可进行精确的核苷酸替换而不会造成双链断裂。因此,我们的第二个目标是证明使用两个易于评分的基因在苹果和梨中进行 CRISPR/Cas9 碱基编辑的可行性:乙酰乳酸合酶 - ALS(赋予对氯磺隆的抗性)和 PDS。MdU3 和 MdU6 启动子下的两个引导 RNA 被偶联到含有与切口酶 Cas9 融合的胞苷脱氨酶的胞苷碱基编辑器中。使用这个载体;我们在目标基因中诱导了 C 到 T 的 DNA 替换;导致氨基酸序列发生离散变异并产生新的等位基因。通过共同编辑 ALS 和 PDS 基因;我们成功获得了抗氯磺隆和白化梨系。总体而言;我们的工作表明,再生步骤可以有效减少初始嵌合现象,并且可以与碱基编辑的应用相结合,在多年生植物中创建准确的基因组编辑。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
油菜籽在发育过程中含有叶绿素,使其呈现绿色。随着种子的成熟,它们会呈现出黑色、红褐色到黄色等颜色。黑色和红褐色种子的种皮会积累色素,而黄籽品种的种皮透明,可以露出胚的颜色。研究表明,黄籽油菜籽比黑籽品种休眠期短、发芽更简单、含油量更高,因此培育黄籽油菜籽是提高油分含量的有效方法(Yang et al.,2021)。芥菜和油菜黄籽品种的鉴别相对简单,因为纯黄色表型在遗传上是稳定的(Li et al.,2012;Chen et al.,2015)。然而,由于种皮颜色变异复杂,包括黄色中夹杂黑色斑点、斑块或棕色环等杂色,油菜种皮一直未能获得稳定的纯黄色后代,且分离后代的种皮颜色呈现连续变异(刘,1992;Auger等,2010;Qu等,2013),因此准确、高效地测定油菜种皮颜色仍是一项关键且具有挑战性的任务。许多研究涉及油菜籽颜色的鉴别(Li等,2001;Somers等,2001;Zhang等,2006;Baetzel等,2003;Tańska等,2005;Li等,2012;Liu等,2005;Ye等,2018)。例如,Li等(2001)通过目视观察来评估甘蓝型油菜的黄籽程度,这种方法简单但过于依赖观察者,导致识别可能不准确。Somers等(2001)利用光反射来评估黄籽颜色等级,通过测量反射值并计算籽粒颜色指数或光反射值。该方法虽然较为客观,但仅能捕捉亮度等单维颜色数据,忽略了原始材料的丰富信息。为了解决这一限制,许多学者致力于通过 RGB 颜色系统进行数字图像分析( Zhang et al.,2006 ; Baetzel et al.,2003 ; Ta ńska et al.,2005 ; Li et al.,2012 ; Liu et al.,2005 ; Ye et al.,2018 )。然而,油菜籽表皮颜色复杂且相似,精准识别颜色具有挑战性,现有的技术缺乏可靠性和标准化。因此,准确、有效地测量黄籽油菜的颜色仍然至关重要。化学计量学和计算机技术的最新进展导致了近红外光谱技术(NIRS)的发展,这是一种结合物体图像和光谱数据的技术。 NIRS 以其速度快、无损和高效而闻名,被广泛用于农产品的快速、无损分析。多项研究已经证明了它的实用性(Guo 等人,2019年;布等人,2023;梁等人,2023;刘等人,2021;佩蒂斯科等人,2010;森等人,2018;刘等人,2022;张等人,2020;魏等人,2020;张等人,2018;江等,2017;李等人,2022;江等,2018;他等人,2022)。例如,郭等人。 (2019) 使用 NIRS 成像系统 (380 – 1,000 nm) 来准确量化掺假大米,而 Bu 等人。 (2023) 将高光谱成像与卷积神经网络相结合,建立了高粱品种识别的智能模型,准确率超越了现有模型。该技术也已应用于油菜生长诊断。例如,刘等人 (2021) 开发了一种基于高光谱技术的检测算法来预测甘蓝型油菜中的油酸含量。Petisco 等人 (2010) 研究了甘蓝型油菜的可见光和近红外光谱。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。