具有分层结构的材料结合了软材料域和硬材料域以及聚结界面,与均质材料相比,它们具有更优异的性能。本演讲介绍了在环辛二烯 (COD) 与共聚单体亚乙基降冰片烯 (ENB) 的前端聚合过程中通过形态发生图案形成来控制材料性能。反应动力学和热传输的调整会导致自旋模式不稳定性,并形成无定形和半结晶域,这些域出现在固体聚合物和传播固化前沿之间产生的内部界面上。域的大小、间距和排列由反应动力学、热力学和边界条件之间的相互作用控制。比较用三种不同引发剂制成的聚合物的结构,可以发现聚合物链相对于前端传播方向的方向存在可重复的变化。我们描述了这些图案化域对聚合物拉伸强度、弹性模量和韧性的影响。链的空间分布和排列以及层片的堆积导致优先取向的断裂韧性显著增加。
1.1 目的 本文件旨在描述美国国家先进材料性能中心 (NCAMP) 用于材料特性数据采集、材料鉴定、材料允许值生成和材料等效性过程的标准操作程序 (SOP)。材料特性数据采集过程旨在生成具有足够谱系和控制的基本材料特性数据,以提交给《复合材料手册 17》(CMH-17) 的完整文档部分。材料允许值生成过程使用 CMH-17 程序和指南创建基于统计的基础值。材料鉴定过程涉及将新材料鉴定为符合材料采购规范,同时建立确保材料特性一致和可靠所必需的过程控制文件和过程规范。等效性过程旨在评估材料或工艺中微小变化的影响;它使用 DOT/FAA/AR-03/19 和 MIL-HDBK-17-1F 第 8.4.1 节中概述的统计测试将新数据集与现有数据集进行比较。NCAMP 是国家航空研究所 (NIAR) 下属的一个中心,独立于其他 NIAR 实验室和研究计划运作。
本课程旨在提供从家庭到各种工程应用中使用的金属冶金方面的基础知识。它涵盖了材料的基本方面、晶体结构及其表示,以及材料中存在的各种缺陷。然后,讨论了合金化的必要性及其相图中发生的相应变化。特别关注工业中广泛使用的重要黑色和有色合金。包括通过不同的热处理工艺及其微观结构变化来定制材料性能。最后,课程以对金属以外的材料的讨论结束,其中包括聚合物、陶瓷和复合材料等先进材料。课程成果:在课程结束时,学生将能够 1. 解释晶体结构及其缺陷的基本概念,并在立方晶胞中绘制晶体点、方向和平面。2. 解释合金二元相图中存在的各种相,并计算相的质量分数。3. 推荐热处理工艺以实现钢性能的期望变化。 4. 根据性质和应用,区分铁合金和有色合金。根据性质和应用,对聚合物、陶瓷和复合材料进行分类和解释。
激光材料加工技术在各个行业中的重要性日益提高,应用领域不断扩大,激光系统成本不断下降,这些都使得这项技术至关重要。本文全面回顾了激光技术在制造业中的进展、应用和影响,特别关注激光表面处理、焊接、切割、钻孔和熔覆。该领域的学术研究正在推动创新制造技术的发展,旨在提高产品质量、设计多材料组件并实现经济效益。已经进行了大量研究来调查和优化激光对材料的影响,从而在激光材料加工方面取得了重大进展。主要发现强调了激光表面处理在增强材料性能方面的重要性、激光焊接提供的多功能性和精度、非接触式加工的优势、激光切割的高速和灵活性以及激光钻孔有效加工硬质高强度材料的能力。此外,仔细确定适当的激光参数以实现激光加工材料所需的机械性能至关重要。正在进行的研究旨在进一步了解激光与材料的相互作用并改进激光加工技术。简而言之,激光材料加工技术在改进制造工艺和提高产品质量方面继续发挥重要作用。
生物复合材料面临的巨大挑战之一是提高弯曲强度和冲击强度。因此,本研究的重点是优化和参数研究天然混合纤维增强纳米复合材料。聚丙烯中的红麻/玄武岩/纳米石墨烯纤维用于增强生物复合材料样品。采用响应面法 (RSM) 研究并根据包括玄武岩纤维重量百分比、红麻纤维以及纳米石墨烯在内的多个参数提出了生物复合材料性能的数学模型。在弯曲和冲击试验下讨论了样品的性能,并使用 FESEM 图像解释了结果。根据弯曲强度和能量吸收的增加、样品重量的减轻,将参数的最优值设置为多目标,并考虑到设计目标绘制了帕累托图。研究结果表明,弯曲性能最佳的复合材料试件弯曲强度为 51.2558 MPa,由 0.8723 wt% 的玄武岩纤维、15% 的洋麻纤维和 0.76881% 的石墨烯纳米颗粒组成。此外,冲击性能最佳的试件能量吸收率为 116,809 J / m,由 8.23% 的玄武岩纤维、0.808% 的石墨烯纳米颗粒和 15% 的洋麻纤维组成。
摘要:通过使用绿色技术(例如超临界二氧化碳(SCCO 2)),亲和力聚合材料的设计和开发是一个迅速发展的研究领域,在各种领域,包括分析化学,药品,生物医学,能源,食物,食物和环境补救,包括大量不同领域的应用。这些亲和力的聚合物材料专门设计用于与靶分子相互作用,表现出高亲和力和选择性。SCCO 2的独特特性,它们既具有液体和气体样的特性又具有可访问的临界点,它为聚合物的合成和处理提供了环境友好,高效的技术。SCCO 2中亲和力聚合材料的设计和合成涉及多种策略。通常,将官能团或配体掺入聚合物矩阵中允许与目标化合物进行选择性相互作用。根据亲和力和选择性,单体类型,配体和合成条件的选择是材料性能的关键参数。此外,在这些策略中通常使用了与共聚合和表面修饰的分子印记,从而增强了材料的性能和多功能性。本综述旨在概述使用SCCO 2的亲和力聚合物材料设计的关键策略和最新进步。
MSTS劳动力保持执行老化/生产科学实验所需的操作能力,以提供与提高预测能力,评估当前库存并根据里程碑时间表相关的数据相关的数据。显着的贡献包括同时对三个亚临界实验(SCE)系列的支持,并成功执行了SCE。MSTS通过成功执行旨在确定propenium Material Dynamic属性响应的实验来实现库存做出了宝贵的贡献,以支持W87-1修改计划和硬件开发支持以满足W88 ALT 370生产需求的PIT认证。MSTS与Los Alamos国家实验室(LANL)合作,进行了两个高爆炸性实验系列,以评估潜在的碎片化模式和材料性能,以评估和证明B61的可靠性和B61-12的发展。MSTS通过设计,开发和测试尖端诊断和实验平台的设计,开发和测试,以实现核安全企业(NSE)(NSE)的武器性能评估,包括诊断和武器绩效评估,包括诊断和组件特征,以支持两个点火实验。
摘要:人工智能 (AI) 算法在材料设计中的集成正在彻底改变材料工程领域,因为它们能够预测材料特性、设计具有增强特性的全新材料以及发现超出直觉的新机制。此外,它们可用于推断复杂的设计原理,并比反复试验更快地识别高质量候选材料。从这个角度来看,我们在此描述了这些工具如何加速和丰富具有优化特性的新型材料的发现周期的每个阶段。我们首先概述了材料设计中最先进的 AI 模型,包括机器学习 (ML)、深度学习和材料信息学工具。这些方法能够从大量数据中提取有意义的信息,使研究人员能够发现材料特性、结构和成分中的复杂相关性和模式。接下来,我们将全面概述人工智能驱动的材料设计,并强调其潜在的未来前景。通过利用此类人工智能算法,研究人员可以有效地搜索和分析包含各种材料特性的数据库,从而确定特定应用的有希望的候选材料。这种能力对从药物开发到储能等各个行业都有深远的影响,材料性能至关重要。最终,基于人工智能的方法将彻底改变我们对材料的理解和设计,开启加速创新和进步的新时代。
摘要:食品浪费是一个紧迫的全球挑战,每年造成超过 1 万亿美元的损失,占全球温室气体排放量的 10%。大量研究致力于使用活性可生物降解包装材料来改善食品质量、最大限度地减少塑料使用并促进可持续包装技术的发展。然而,这方面的成功有限,这主要归因于材料性能差和生产成本高。在最近的文献中,银纳米粒子 (AgNPs) 的整合已被证明可以改善生物聚合物的性能,从而促进生物纳米复合材料的发展。此外,AgNPs 对食源性病原体的抗菌特性可延长食品保质期,并为减少食品浪费提供途径。然而,很少有评论从工业角度对整个生物聚合物组合中的 AgNPs 进行整体分析。因此,本评论批判性地分析了基于 AgNP 的生物纳米复合材料的抗菌、阻隔、机械、热和防水性能。我们还从食品包装应用的角度讨论了这些先进材料,并评估了它们在延长食品保质期方面的表现。最后,我们批判性地讨论了 AgNP 生物纳米复合材料商业化的当前障碍,以提供一项工业行动计划,以开发可持续包装材料,减少食品浪费。
摘要:航空工业的快速发展对材料性能提出了越来越高的要求,智能材料结构的研究也受到了广泛的关注。智能材料(如压电材料、形状记忆材料、超磁致伸缩材料等)具有独特的物理性能和优异的集成性能,在航空工业中作为传感器或执行器表现出色,为航空工业的各类智能化应用提供了坚实的材料基础。压电材料作为一种热门的智能材料,在结构健康监测、能量收集、振动噪声控制、损伤控制等领域有着大量的应用研究。形状记忆材料作为一种具有变形能力的独特材料,在形状控制、低冲击释放、振动控制、冲击吸收等领域都有着自己突出的表现。同时,作为辅助其他结构的材料,在密封连接、结构自修复等领域也有着重要的应用。超磁致伸缩材料是一种具有代表性的先进材料,在导波监测、振动控制、能量收集等方向具有独特的应用优势。此外,超磁致伸缩材料本身具有高分辨率输出,在高精度执行器方向的研究也较多。本文对上述应用方向的一些智能材料进行总结和讨论,旨在为后续相关研究的初步开展提供参考。
