激光金属沉积 (LMD) 是一种增材制造工艺,在制造和修复复杂功能部件方面表现出色。然而,为了提高表面质量和材料性能,生产的部件需要传统的机加工操作。由于样品在构建过程中受到高度局部的热输入,生产的部件中可能会出现局部材料性能的显著变化。这可能会影响 LMD 工艺生产的部件的可加工性。本研究旨在研究铣削工艺及其对 LMD 工艺生产的 Ti-6Al-4V 部件的表面完整性的影响。进行热处理是为了使材料的微观结构均匀化。以传统的 Ti-6Al-4V 作为参考材料样品。根据切削工艺参数,加工后的 LMD 部件的切削力和表面粗糙度分别比传统样品高 10-40% 和 18-65%。加工后的 LMD 样品中的压缩残余应力比传统样品高 11-30%。这些差异与测试部件之间的微观结构和晶粒尺寸差异有关。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)由第五届 CIRP CSI 2020 科学委员会负责同行评审
• 由于某些性能的变异系数较高,因此对工艺性能数据进行了评估,并建立了物理性能验收限度——结果,一些数据被排除在外,需要生成新的数据。 • 进行了工艺参数评估,并计划进行额外评估,以便在不改变材料性能的情况下提高测试面板的质量和可重复性。 • 已生产了五批以上的预浸料和 100 块面板,并进行了 300 多次物理测试、60 次热物理测试和 700 多次机械测试。
大型 GRP 货船的设计和制造完全符合目前最先进的水平,但结构的长期耐久性值得怀疑。需要进行更多研究才能对材料性能建立令人满意的信心。回顾了现有大型 GRP 船舶的经验,并在可能的情况下将其推广到大型 GRP 货船。提出并论证了 GRP 船体结构的设计标准。回顾了系统/设备安装的 ~let:jods。
高温和恶劣环境下的制造。• 合金包括 GRCop-42、GRCop-84、NASA HR-1、GRX-810、耐火材料基 (C103)。• 制造所需组件和材料性能的 AM 工艺已经成熟。• NASA 已对这些合金进行了超过 50,000 秒和 1400 次热火测试。• 商业空间正在积极使用这些合金进行开发和飞行灌注。• 数据和属性可供商业和政府合作伙伴使用。
大型 GRP 货船的设计和制造完全符合目前最先进的水平,但结构的长期耐久性值得怀疑。需要进行更多研究才能对材料性能建立令人满意的信心。回顾了现有大型 GRP 船舶的经验,并在可能的情况下将其推广到大型 GRP 货船。提出并论证了 GRP 船体结构的设计标准。回顾了系统/设备安装的条件。
提议的主题与“清洁燃料材料挑战”计划非常契合,因为它探索了一种可扩展的解决方案,用于制造具有独特形态和特性的纳米颗粒(电催化剂)。它有助于解决阻碍这一关键技术工业化的材料发现和开发挑战。该项目与 MCF 计划下与不列颠哥伦比亚大学合作的现有项目相一致,并将利用该计划下开发的能力进行材料性能评估。该项目有可能在材料成分以及方法论的某些方面产生知识产权。
增材制造 (AM) 的接受度取决于最终零件的质量和工艺的可重复性。最近,许多研究致力于建立工艺行为与材料性能之间的关系。诸如激光-材料相互作用、熔池动力学、喷出物形成和粉末床上的粒子运动行为等现象是 AM 社区特别感兴趣的,因为这些事件直接影响工艺的结果。阻碍 AM 采用的另一个方面是需要具有成本效益的粉末材料及其可持续的加工和回收。
摘要 在材料科学中,可控和不可控描述符均可用于表征材料。可控描述符的例子包括元素组成和制造过程;相反,不可控描述符由表征特定样品的实验数据生成,例如原始光谱数据或比重。在本研究中,我们考虑一种实验设计来获得一个高精度预测模型,其中材料的不可控描述符是特征,其材料属性是标签。一般而言,由于不可控描述符与材料属性更密切相关,因此基于它们的预测将更准确。本研究中实验设计的目标不是改善材料属性本身,而是预测其属性。为了实现这种设计,我们选择合适的可控描述符来合成候选材料,当相应的不可控描述符和材料属性添加到训练数据中时,预测精度会提高。我们提出了两种实验设计方法,一种基于贝叶斯优化,另一种基于不确定性抽样。使用记录了可控和不可控描述符以及机械性能的聚合物数据库,我们确认我们的方法可以选择合适的候选材料来训练一个高精度预测模型,其中材料性能由不可控描述符预测。我们提出的方法可以应用于材料开发,其中不可控描述符比获得目标材料性能更容易通过实验获得;它也将有助于提取材料结构和性能之间的关系。
增材制造工艺在工业领域越来越重要。特别是直接金属沉积 (DMD) 是一种很有前途的制造技术,因为它可以实现广泛的应用,例如从头开始制造零件、在传统加工的原始零件上添加材料,甚至高效修复高价值零件 [1]。除了许多优点外,该工艺的可控性仍然很困难,导致内部缺陷、几何偏差或微观结构不均匀。相变、粉末-气体动力学和参数不确定性等多种物理现象会影响工艺行为并使工艺处理复杂化。因此,需要进行大量的实验活动来确定具有可接受几何和材料性能的工艺参数
热处理是一种显著改变材料性能的方法。当材料缺乏某些机械性能时,可以通过加热来改变其化学性能和微观结构。这有助于实现更好的屈服强度、延展性和韧性。本项目讨论了多种不同的热处理方法对几种材料的影响,以提高延展性和伸长率而不降低强度。所讨论的材料是高铝钢和 Strenx 700MC 钢,前者正在开发中,后者是市售钢。这些钢有望用作高延展性、高强度和第三代钢。热处理可以改变基础材料的机械性能,从而优化这些钢以用于垂直接入解决方案。