摘要:在现实世界中,创伤的严重程度是使用简略损伤量表 (AIS) 来衡量的。然而,目前无法使用有限元人机模型的输出来计算 AIS 量表,有限元人机模型目前依靠最大主应变 (MPS) 来捕捉严重和致命的伤害。为了克服这些限制,引入了一种独特的器官创伤模型 (OTM),该模型能够计算所有 AIS 级别对大脑模型生命的威胁。OTM 使用一种名为峰值虚拟功率 (PVP) 的功率法,并将大脑白质和灰质创伤反应定义为撞击位置和撞击速度的函数。这项研究在损伤严重程度计算中考虑了衰老,包括软组织材料降解以及由于衰老导致的脑容量变化。此外,为了解释大脑模型的拉格朗日公式在表示出血方面的局限性,提出了一种包括硬膜下血肿影响的方法,并将其作为预测的一部分。 OTM 模型已针对两次真实跌倒进行了测试,并被证明能够正确预测死后结果。本文是一个概念验证,等待更多测试,可以支持法医研究。
储能系统可解决当前供需间歇性问题,从而提高能源效率。在众多可用技术中,热化学储能前景十分广阔。在这项工作中,我们首次通过实验研究了感应加热作为将电力系统与热能技术直接耦合的方法。该系统还允许在快速多重吸附 - 解吸循环控制中进行多种测量。在定制装置中实现 CaCl 2 -NH 3 加合物的吸附和解吸循环。铁丝和废红泥被研究作为潜在的感应材料。使用差示扫描量热法、热重法、扫描电子显微镜和比表面积对材料在 1、2 和 1000 次循环后的性能进行评估。废红泥表现出良好的感应潜力。在所有情况下,1000 次循环后均未观察到材料降解。与使用铁丝加热的样品相比,使用废弃红泥加热的样品具有更高的最大吸收容量(0.304 对 0.154 g NH3 /g CaCl2 )和解吸焓(716 对 460 KJ/ kg CaCl2 )。这被发现与含有红泥的样品的平均比表面积有关,该比表面积几乎是铁样品的两倍。我们希望这里提出的概念可以促进感应加热方向的研究,同时为废弃红泥产生新的利用途径。
由于阳离子无序金属氧化物限制了锂离子的扩散,导致其电化学性能较差,因此早期研究较少重视阳离子无序金属氧化物作为锂离子电池正极材料的研究。然而,一种新的无序岩盐 (DRX) 结构材料 Li 1.211 Mo 0.467 Cr 0.3 O 2 的发现,其在 0.05 C 时具有 > 260 mAh g − 1 的高容量,为这一新兴领域开辟了新的研究前景,并确立了 DRX 材料作为一种有前途的替代品的地位,与目前广泛使用的层状正极材料相比,它具有更广泛的过渡金属元素选择。DRX 材料的一些主要障碍包括阻碍锂离子扩散的𝜸-LiFeO 2 型阳离子短程有序性、不可逆氧损失和过渡金属溶解,这些也对适当的表征技术提出了挑战。人们已经采用了多种性能优化策略,包括氟掺入、高熵改性和表面涂层。本评论文章重点介绍表征技术的进步,以揭示锂离子扩散和DRX正极材料降解的潜在机制,以解决上述挑战,并为未来对此类材料的研究提供启发。
由于卫星环境的严酷性,在注塑过程中保持 Ultem 1000 的“数据表”属性非常重要。有能力的注塑机将在加工前确定材料的理想熔体温度和压力曲线。例如,Drake Plastics 开发了最先进的工艺控制,并将其安装在模具中。该技术实时监控和保持正确的熔体温度和压力。对这种先进工艺技术的投资可最大限度地减少模内应力,防止材料降解,并实现 Ultem 1000 在天线组件中长期性能的最佳性能。CNC 加工具有多种优势,具体取决于所需数量、零件复杂性和应用的开发阶段。制造方法涉及从 Ultem 1000 挤压型材(如棒、板或管)加工出组件。虽然机械加工通常比注塑成型损失更多,但 Drake 专注于挤出高效尺寸的高性能塑料型材,以最大限度地减少机械加工过程中的材料损失。对于计划注塑成型的卫星天线,从 Ultem 1000 型材加工原型可能是产品开发项目中实用的第一阶段。零件可以快速加工,无需大量工具投资,然后进行测试以验证其性能。如果测试表明需要修改设计,则机械加工可以快速进行更改。
激活体液免疫并产生中和抗体的新疫苗平台需要对抗新兴的病原体,包括流体病毒。通过填充免疫细胞的抗原sca剂量将浆液泥浆浆中的高表面积造成抗原摄取,作为生物材料降解,以增强体液免疫力。抗原负载的 - 微凝胶引起了稳健的细胞体液免疫反应,CD4 + T卵泡辅助器(TFH)细胞增加,并长时间生发中心(GC)B细胞与常用的辅助辅助辅助,铝氢氧化铝(ALUM)相当。增加聚合物材料的重量分数会导致材料的增加和抗原特异性抗体滴度优于明矾。用被灭活的流体病毒疫苗接种的小鼠,加入了这种更高度交联的配方中,引起了强烈的抗体反应,并提供了防止高剂量病毒攻击的保护。通过调整物理和化学特性,可以增强辅助性,从而导致体液免疫和防止病原体,利用两种不同类型的抗原材料:个体蛋白质抗原和灭活病毒。平台的灵活性可以使新疫苗的设计能够增强先天和适应性的免疫细胞编程,从而产生和调整高能力抗体,这是一种产生长期免疫力的有前途的方法。
a) 厌氧消化器 - 用于通过厌氧消化从液体或固体废物中产生沼气的设备。消化器被覆盖或封装,以便能够捕获沼气用于供热和/或发电或将沼气输送到天然气网络。b) 厌氧消化 - 在没有空气/氧气供应的情况下,厌氧细菌的作用使有机材料降解和稳定,从而产生甲烷和二氧化碳。进行厌氧消化的典型有机材料是城市固体废物 (MSW)、动物粪便、废水、有机工业废水和需氧废水处理厂产生的生物固体。c) 厌氧泻湖 - 一种处理系统,由一个深土盆组成,其体积足以使可凝固体沉淀,消化残留污泥,并通过厌氧方式减少一些可溶性有机底物。厌氧泻湖不充气、不加热、不混合,除可能浓缩了过量未消化油脂和浮渣的浅表层外,厌氧条件占主导地位。d) 沼气 - 由厌氧消化器/厌氧泻湖产生的气体。通常,气体的成分为 50% 至 70% 的 CH4 和 30% 至 50% 的 CO2,以及痕量的 H2S 和 NH3(1% 至 5%)e) 有机废物 - 含有可降解有机物的固体废物。这可能包括粪肥、农业工业和食品工业废物、污水处理厂的污泥和 MSW。f) 城市固体废物 (MSW) - 不同固体废物类型的异质混合物,通常由市政当局或其他地方当局收集。MSW 包括家庭垃圾、花园/公园垃圾和商业/机构垃圾。
摘要。本文综述了超材料在生物医学领域的广泛应用和研究现状,展示了其在提高诊断准确性、促进组织再生和治疗疾病方面的巨大潜力。本文综述了超材料在生物医学领域的广泛应用和研究现状,展示了其在提高诊断准确性、促进组织再生和治疗疾病方面的巨大潜力。与传统材料的性能相比,超材料凭借其独特的物理性质和高度的可设计性,在生物医学领域取得了令人瞩目的进展。以太赫兹超材料为例,通过将其高灵敏度与高可设计性相结合,实现了对生物分子和组织的精确检测。以太赫兹超材料为例,通过将其高灵敏度与生物组织的高穿透性相结合,实现了对生物分子和组织的精确检测。另一方面,机械超材料通过模拟生物组织的力学行为,促进了柔性应变传感器灵敏度的提高和组织工程的进步。此外,光驱动、热驱动、磁驱动、手性和电驱动等多功能超材料为生物技术产业开辟了新的可能性。此外,光驱动、热驱动、磁驱动、手性和电驱动等多功能超材料为生物医学领域开辟了新的可能性。尽管存在生物相容性和材料降解速率控制的挑战,超材料在疾病诊断、治疗和药物发现等方面的应用仍然很有希望。未来的研究应侧重于提高材料的生物相容性,开发先进的制造技术,促进个性化医疗,并加强跨学科合作,进一步探索超材料在生物医学中的潜力。
拟议的小型研讨会让您可以选择现场或在线参加亲爱的同事和作者。第六届结构完整性和耐久性国际会议(ICSID'2022)组委会邀请所有对结构完整性感兴趣的人参加,目的是提高工程结构、部件及其相关材料的安全性和性能。本次特别小型研讨会“极端油气环境下的材料挑战”将重点关注石油和天然气工业领域的技术挑战。ICSID'2022 邀请来自工业界、学术界和政府的科学家和工程师就技术应用、研究和新解决方案进行出色的经验和想法交流。特别欢迎在以下领域做出贡献:针对具有挑战性的油气环境的材料选择(即 H 2 S、CO 2、HPHT……);油气生产和功能应用中的先进材料,先进的耐腐蚀合金(例如超级不锈钢、镍基合金);腐蚀、环境辅助开裂和材料降解(CO 2 、H 2 S、Cl-、HE 等);可靠性和材料故障;恶劣环境和高温高压下的高强度和抗断裂材料;计算和分析模型;用于石油和天然气生产的新型和先进耐腐蚀合金以及案例历史等。我们借此机会诚挚地邀请您参加本次小型研讨会,现场或在线提交论文。我们敦促您不要错过这一历史性事件,并以您的极大热情和贡献积极加入我们。全文将在 Proceedia Structural Integrity、PSI 的 ICSID 2022 会议论文集上发表:https://www.journals.elsevier.com/procedia-structural-integrity 在 ICSID 2022 上发表的选定全文的作者将被邀请提交其论文的扩展版本,以发表在《工程失效分析》特刊上。如果您需要更多信息,请联系组委会 https://icsid2022.fsb.hr/ 和/或小型研讨会组织者。希望在金秋时节在克罗地亚杜布罗夫尼克见到您,并希望您在即将举行的活动中留下难忘的回忆。
目前正在开发脑机接口,以恢复因受伤或疾病而瘫痪的人的运动能力。虽然治疗潜力巨大,但接口的长期稳定性对于广泛的临床应用至关重要。虽然许多因素都会影响记录和刺激性能,包括电极材料稳定性和宿主组织反应,但这些因素尚未在人体植入物中进行研究。在这项临床研究中,我们试图通过外植体分析来表征材料完整性和生物组织封装,以确定影响电生理性能的因素。我们检查了从参与皮层内 BCI 研究的两名人类参与者身上移植的总共六个犹他阵列。在一名参与者 (P1) 体内植入了两个铂 (Pt) 阵列 980 天,在另一名参与者 (P2) 体内植入了两个 Pt 和两个氧化铱 (IrOx) 阵列 182 天。我们观察到,所有六个阵列的记录质量都呈现出相似的趋势,即在最初 30 – 40 天内峰峰值电压最初增加,随后在 P1 中逐渐下降。使用光学和双光子显微镜,我们观察到在参与者 P1 中植入较长时间的两个阵列的组织包裹程度更高。然后,我们使用扫描电子显微镜和能量色散 X 射线光谱来评估材料退化。发现 Pt 阵列的所有材料退化指标在植入时间较长的参与者中更为明显。两个 IrOx 阵列接受了短暂的调查刺激,其中一个阵列显示大多数受刺激部位的铱丢失。记录性能似乎不受这种铱损失的影响,这表明 IrOx 涂层的附着力可能受到刺激的影响,但金属层直到或之后才脱落阵列移除。总之,植入时间较长的阵列中组织包裹和材料降解更为明显。此外,这些阵列的信号幅度和阻抗也较低。应开发新的生物材料策略,以最大限度地减少纤维包裹并增强材料稳定性,以实现较长植入期内的高质量记录和刺激。